Matter-wave optics with Bose-Einstein condensates in microgravity

Quantum sensors based on the interference of cold atoms have advanced to the forefront of precision measurements in geodesy, metrology and tests of fundamental physics. The ultimate potential of these devices is realized using quantum degenerate atoms in extended free fall. This can be achieved on microgravity platforms such as drop towers, parabolic flights, ballistic rockets, satellites and space stations. The transition to mobile and robust devices that can withstand the demands of these environments comes with many challenges. Quantum sensors need to be scaled down and integrated without compromising their performance. In fact, they need to significantly outpace conventional instruments, since microgravity time is an expensive resource and limited to a few seconds at a time on the most accessible platforms. This thesis describes the construction, qualification and operation of a miniaturized ultracold atom experiment that meets these challenges. The QUANTUS-2 apparatus features a payload weight of 147 kg and a payload volume of 0.3m3. It generates Bose-Einstein condensates of 4×105 87Rb atoms every 1.6 seconds, a flux of ultra-cold atoms that is on par with the best lab-sized devices. Ensembles of 1×105 atoms can be created at a 1Hz rate. It is currently the fastest machine of its kind and achieves the highest atom number of any atom chip setup. The apparatus continuously withstands peak accelerations of up to 45 g during microgravity campaigns at the drop tower facility in Bremen, Germany. Here, the payload has accrued 208 drops and 9 catapult launches over 24month. The setup is the first atom optics experiment to stand up to the technical demands of catapult operation. Four condensates can be created and observed consecutively during nine seconds of free fall in a single catapult launch. In total, the experiment has been suspended in microgravity for over 17minutes. With the record source performance, the repetition rate for microgravity experiments with ultra-cold atoms was increased by a factor of four compared to previous devices. The total atom number was increased by a factor of 40, vastly improving the signal to noise ratio for absorption images of spatially extended clouds. The ensembles can be prepared consistently over many weeks of drop tower operation. The variance of the mean center of mass velocity in two observable directions is 7.3 μm/s and 6.9 μm/s. Magnetic lensing techniques were employed to manipulate the expansion of the ensembles. First results yield a residual expansion rate in three dimensions of σv = 116.9 ± 13.9 μm/s, which implies a three-dimensional effective temperature of T = 47.6 ± 11.3 pK at an average condensate atom number ofN = 93000. These values constitute the best collimation of any atomic ensemble and the most promising source for atom interferometry reported to date. Optimizing the current lensing sequence will reduce the expansion rate further to effective temperatures in the femtokelvin regime. The level of control demonstrated over the condensates is highly relevant for the advancement of matter-wave optics and quantum sensors. Controlling the motion and size of atomic clouds is intrinsically tied to many systematic effects in high precision measurements. QUANTUS-2 will provide a platform to explore and mitigate these limitations on unprecedented time scales of up to seven seconds of free evolution.

[1]  S. Chiow,et al.  Atom interferometry tests of local Lorentz invariance in gravity and electrodynamics , 2009, 0905.1929.

[2]  X. Chen,et al.  Test of Equivalence Principle at 10(-8) Level by a Dual-Species Double-Diffraction Raman Atom Interferometer. , 2015, Physical review letters.

[3]  K. Aikawa,et al.  Direct evaporative cooling of K 41 into a Bose-Einstein condensate , 2008, 0812.4335.

[4]  R.J.C. Spreeuw,et al.  The Two-Dimensional Magneto-optical Trap as a Source of Slow Atoms , 1998 .

[5]  C. Unnikrishnan,et al.  Realization of an intense cold Rb atomic beam based on a two-dimensional magneto-optical trap: Experiments and comparison with simulations , 2006 .

[6]  Joseph J. Hope,et al.  Why momentum width matters for atom interferometry with Bragg pulses , 2011, 1110.2901.

[7]  E. Torrontegui,et al.  Fast transport of Bose–Einstein condensates , 2011 .

[8]  W. Chaibi,et al.  Characterization and limits of a cold-atom Sagnac interferometer , 2009, 0907.2580.

[9]  L. Broglie,et al.  The reinterpretation of wave mechanics , 1970 .

[10]  S. Abend,et al.  Self-alignment of a compact large-area atomic Sagnac interferometer , 2012 .

[11]  Chu,et al.  Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure. , 1985, Physical review letters.

[12]  Castin,et al.  Bose-Einstein Condensates in Time Dependent Traps. , 1996, Physical review letters.

[13]  S Schlamminger,et al.  Test of the equivalence principle using a rotating torsion balance. , 2007, Physical review letters.

[14]  N. J. Druten,et al.  Evaporative Cooling of Trapped Atoms , 1996 .

[15]  William Plowden The Compact , 2003 .

[16]  N. Christensen,et al.  Delta Kick Cooling: A New Method for Cooling Atoms , 1997 .

[17]  I. Lesanovsky,et al.  Sensing electric and magnetic fields with Bose-Einstein condensates , 2006 .

[18]  Kagan,et al.  Evolution of a Bose-condensed gas under variations of the confining potential. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[19]  Hans J. Rath,et al.  The new Drop Tower catapult system , 2005 .

[20]  M. Popp,et al.  A high-flux BEC source for mobile atom interferometers , 2015, 1501.00403.

[21]  M. Krutzik Matter wave interferometry in microgravity , 2014 .

[22]  A. Landragin,et al.  Detecting inertial effects with airborne matter-wave interferometry , 2011, Nature communications.

[23]  Gilberto Saccorotti,et al.  Precision gravimetry with atomic sensors , 2009 .

[24]  A. M. Martin,et al.  Collective excitation frequencies and stationary states of trapped dipolar Bose-Einstein condensates in the Thomas-Fermi regime , 2010, 1003.0371.

[25]  M. Inguscio,et al.  Feshbach resonances in ultracold 39K , 2007, 0705.3036.

[26]  W. Schleich,et al.  Quantum test of the Universality of Free Fall using rubidium and potassium , 2014, The European Physical Journal D.

[27]  H. Dittus Drop tower ‘bremen’: A weightlessness laboratory on earth , 1991 .

[28]  M. Kasevich,et al.  Multiaxis inertial sensing with long-time point source atom interferometry. , 2013, Physical review letters.

[29]  Quentin Bodart,et al.  Double diffraction in an atomic gravimeter , 2009, 0909.0102.

[30]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[31]  S. Chiow,et al.  Atom interferometers with scalable enclosed area. , 2009, Physical review letters.

[32]  Wolfgang Ertmer,et al.  Testing the universality of free fall with rubidium and ytterbium in a very large baseline atom interferometer , 2015, 1503.01213.

[33]  M. Kasevich,et al.  Light-pulse atom interferometry , 2008, 0806.3261.

[34]  J. Khoury,et al.  Atom-interferometry constraints on dark energy , 2015, Science.

[35]  W. Herr,et al.  Narrow bandwidth interference filter-stabilized diode laser systems for the manipulation of neutral atoms , 2007, 0706.2277.

[36]  A. Aspect,et al.  All-optical runaway evaporation to Bose-Einstein condensation , 2009, 0903.2745.

[37]  W. Schleich,et al.  Double Bragg Interferometry. , 2016, Physical review letters.

[38]  Theodor W. Hänsch,et al.  ATOMIC MICROMANIPULATION WITH MAGNETIC SURFACE TRAPS , 1999 .

[39]  D. Hume,et al.  Scalable spin squeezing for quantum-enhanced magnetometry with Bose-Einstein condensates. , 2014, Physical review letters.

[40]  D. Weiss,et al.  All-optical Bose-Einstein condensation using a compressible crossed dipole trap , 2005 .

[41]  Mattias Johnsson,et al.  80hk momentum separation with Bloch oscillations in an optically guided atom interferometer , 2013, 1307.0268.

[42]  R. Littlejohn The semiclassical evolution of wave packets , 1986 .

[43]  H. Müller,et al.  Equivalence principle and bound kinetic energy. , 2013, Physical review letters.

[44]  S. Chiow,et al.  102ℏk large area atom interferometers. , 2011, Physical review letters.

[45]  Savas Dimopoulos,et al.  General Relativistic Effects in Atom Interferometry , 2008, 0802.4098.

[46]  David Jones,et al.  High power , 1994, Nature.

[47]  J. Kohel,et al.  Development of an atom-interferometer gravity gradiometer for gravity measurement from space , 2006 .

[48]  C. Pethick,et al.  Bose–Einstein Condensation in Dilute Gases: Appendix. Fundamental constants and conversion factors , 2008 .

[49]  Alaina M. Green,et al.  Rapid cooling to quantum degeneracy in dynamically shaped atom traps , 2016, 1601.05103.

[50]  J. Tuoriniemi,et al.  Nuclear magnetism and superconductivity in rhodium , 2000 .

[51]  Chu,et al.  Trapping of neutral sodium atoms with radiation pressure. , 1987, Physical review letters.

[52]  P. Rosenbusch,et al.  Interference-filter-stabilized external-cavity diode lasers , 2006 .

[53]  Chu,et al.  Atomic interferometry using stimulated Raman transitions. , 1991, Physical review letters.

[54]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[55]  J. Schmiedmayer,et al.  Local emergence of thermal correlations in an isolated quantum many-body system , 2013, Nature Physics.

[56]  R. Lathe Phd by thesis , 1988, Nature.

[57]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[58]  M. Kasevich,et al.  Atom Interferometer Measurement of the Newtonian Constant of Gravity , 2007, Science.

[59]  I. B. Spielman,et al.  A pr 2 00 9 Rapid production of 87 Rb BECs in a combined magnetic and optical potential , 2009, 0904.3314.

[60]  M. Wilde,et al.  Optical Atomic Clocks , 2019, 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC).

[61]  W. Schleich,et al.  Overcoming loss of contrast in atom interferometry due to gravity gradients , 2014, 1401.7699.

[62]  Steven Chu,et al.  Atom-interferometry tests of the isotropy of post-Newtonian gravity. , 2007, Physical review letters.

[63]  T. Aoki,et al.  δ-kick cooling using the Ioffe-Pritchard potential , 2006 .

[64]  J. G. Muga,et al.  Frictionless dynamics of Bose–Einstein condensates under fast trap variations , 2009, 0910.2992.

[65]  David E. Pritchard,et al.  Optics and Interferometry with Atoms and Molecules , 2009 .

[66]  M. Loy Observation of Population Inversion by Optical Adiabatic Rapid Passage , 1974 .

[67]  W. Marsden I and J , 2012 .

[68]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[69]  A. Peters,et al.  Bose-Einstein Condensation in Microgravity , 2010, Science.

[70]  Ken'ichi Nakagawa,et al.  Atom chip based fast production of Bose–Einstein condensate , 2006 .

[71]  G. Biedermann,et al.  Dual-axis, high data-rate atom interferometer via cold ensemble exchange , 2014, 1407.3847.

[72]  Jörn Ostermann,et al.  Evolutionary optimization of an experimental apparatus , 2013, ArXiv.

[73]  A. Miklich,et al.  Bragg scattering of atoms from a standing light wave. , 1988, Physical review letters.

[74]  P. Vignolo,et al.  Shortcuts to adiabaticity for trapped ultracold gases , 2011, 1105.2119.

[75]  T. Schumm,et al.  Matter-wave interferometry in a double well on an atom chip , 2005 .

[76]  M. Kasevich,et al.  Testing general relativity with atom interferometry. , 2006, Physical review letters.

[77]  Philipp Treutlein,et al.  Quantum metrology with a scanning probe atom interferometer. , 2013, Physical review letters.

[78]  T. Hijmans,et al.  Atomic hydrogen in magnetostatic traps , 1994, Quantum Dynamics of Simple Systems.

[79]  R. Grimm,et al.  Production of quantum-degenerate strontium gases , 2012, 1212.2539.

[80]  Chu,et al.  Atomic velocity selection using stimulated Raman transitions. , 1991, Physical review letters.

[81]  Andrews,et al.  Evaporative cooling of sodium atoms. , 1995, Physical review letters.

[82]  James G. Williams,et al.  Progress in lunar laser ranging tests of relativistic gravity. , 2006, Physical review letters.

[83]  DOPPLER-FREE SATURATED ABSORPTION SPECTROSCOPY : LASER SPECTROSCOPY , 2003 .

[84]  W. Ketterle,et al.  Cooling Bose-Einstein Condensates Below 500 Picokelvin , 2003, Science.

[85]  Clifford M. Will,et al.  The Confrontation between General Relativity and Experiment , 2001, Living reviews in relativity.

[86]  F. Reinhard,et al.  Design and construction of an atomic clock on an atom chip , 2009 .

[87]  H. Lewis,et al.  A direct approach to finding exact invariants for one‐dimensional time‐dependent classical Hamiltonians , 1982 .

[88]  John K. Stockton,et al.  Bayesian estimation of differential interferometer phase , 2007 .

[89]  O. V. Lounasmaa,et al.  Nuclear magnetic ordering in simple metals at positive and negative nanokelvin temperatures , 1997 .

[90]  A. Aspect,et al.  Fast production of Bose-Einstein condensates of metastable helium , 2015, 1504.06197.

[91]  A. Peters,et al.  Measurement of gravitational acceleration by dropping atoms , 1999, Nature.

[92]  D. Stamper-Kurn,et al.  High-resolution magnetometry with a spinor Bose-Einstein condensate. , 2007, Physical review letters.

[93]  D. Pritchard,et al.  Spin gradient demagnetization cooling of ultracold atoms. , 2010, Physical review letters.

[94]  D. McKay,et al.  Rapid sympathetic cooling to Fermi degeneracy on a chip , 2005, cond-mat/0512518.

[95]  A. Miffre,et al.  Atom interferometry , 2006, quant-ph/0605055.

[96]  N. Zahzam,et al.  Local gravity measurement with the combination of atom interferometry and Bloch oscillations , 2011, 1109.3605.

[97]  Physikalische Gesellschaft in der Deutschen Demokratischen Republik Fortschritte der Physik = Progress of physics , 1953 .

[98]  J. Schmiedmayer,et al.  Optimized magneto-optical trap for experiments with ultracold atoms near surfaces , 2003, cond-mat/0311475.

[99]  P. Cladé,et al.  New determination of the fine structure constant and test of the quantum electrodynamics , 2010, 2012 Conference on Lasers and Electro-Optics (CLEO).

[100]  P. Cladé,et al.  Large momentum beam splitter using Bloch oscillations. , 2009, Physical review letters.

[101]  J. G. Muga,et al.  Fast atomic transport without vibrational heating , 2010, 1010.3271.

[102]  M. Kasevich,et al.  Matter wave lensing to picokelvin temperatures. , 2014, Physical review letters.

[103]  Reynolds,et al.  Kinetic theory of the evaporative cooling of a trapped gas. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[104]  S. V. Lawande,et al.  Feynman propagator for time-dependent Lagrangians possessing an invariant quadratic in momentum , 1984 .

[105]  P.W.H. Pinkse,et al.  ADIABATICALLY CHANGING THE PHASE-SPACE DENSITY OF A TRAPPED BOSE GAS , 1997 .

[106]  Steven Chu,et al.  Atom interferometry with up to 24-photon-momentum-transfer beam splitters. , 2007, Physical review letters.

[107]  G. Tino,et al.  Test of Einstein equivalence principle for 0-spin and half-integer-spin atoms: search for spin-gravity coupling effects. , 2014, Physical review letters.

[108]  Andrews,et al.  Collective Excitations of a Bose-Einstein Condensate in a Magnetic Trap. , 1996, Physical review letters.

[109]  H. R. Lewis,et al.  An Exact Quantum Theory of the Time‐Dependent Harmonic Oscillator and of a Charged Particle in a Time‐Dependent Electromagnetic Field , 1969 .

[110]  Cornell,et al.  Collective Excitations of a Bose-Einstein Condensate in a Dilute Gas. , 1996, Physical review letters.

[111]  Juha Tuoriniemi,et al.  Nuclear cooling and spin properties of rhodium down to picokelvin temperatures , 2000 .

[112]  J. Simonet Optical traps for Ultracold Metastable Helium atoms , 2011 .

[113]  K. Takase,et al.  Precision rotation rate measurements with a mobile atom interferometer , 2008 .

[114]  D. Gu'ery-Odelin,et al.  Phase-space manipulations of many-body wave functions , 2014, 1409.3727.