Machine Learning Force Fields

In recent years, the use of machine learning (ML) in computational chemistry has enabled numerous advances previously out of reach due to the computational complexity of traditional electronic-structure methods. One of the most promising applications is the construction of ML-based force fields (FFs), with the aim to narrow the gap between the accuracy of ab initio methods and the efficiency of classical FFs. The key idea is to learn the statistical relation between chemical structure and potential energy without relying on a preconceived notion of fixed chemical bonds or knowledge about the relevant interactions. Such universal ML approximations are in principle only limited by the quality and quantity of the reference data used to train them. This review gives an overview of applications of ML-FFs and the chemical insights that can be obtained from them. The core concepts underlying ML-FFs are described in detail, and a step-by-step guide for constructing and testing them from scratch is given. The text concludes with a discussion of the challenges that remain to be overcome by the next generation of ML-FFs.

[1]  E. Noether Invarianten beliebiger Differentialausdrücke , 1918 .

[2]  Janet E. Jones On the determination of molecular fields. —II. From the equation of state of a gas , 1924 .

[3]  W. Heisenberg,et al.  Zur Quantentheorie der Molekeln , 1924 .

[4]  E. Schrödinger An Undulatory Theory of the Mechanics of Atoms and Molecules , 1926 .

[5]  P. Dirac Quantum Mechanics of Many-Electron Systems , 1929 .

[6]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[7]  R. Penrose A Generalized inverse for matrices , 1955 .

[8]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[9]  Paul K. Weiner,et al.  Ground states of molecules , 1972 .

[10]  H. D. Merchant,et al.  Equations of state and thermal expansion of alkali halides , 1973 .

[11]  M. Karplus,et al.  Dynamics of folded proteins , 1977, Nature.

[12]  Henry S. Rzepa,et al.  Ground states of molecules: Part XLII. Vibrational frequencies of isotopically-substituted molecules calculated using MINDO/3 force constants , 1977 .

[13]  M. Dewar,et al.  Ground States of Molecules. 38. The MNDO Method. Approximations and Parameters , 1977 .

[14]  F. L. Hirshfeld Bonded-atom fragments for describing molecular charge densities , 1977 .

[15]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[16]  Arieh Warshel,et al.  An empirical valence bond approach for comparing reactions in solutions and in enzymes , 1980 .

[17]  Nils J. Nilsson,et al.  Principles of Artificial Intelligence , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Peter G. Wolynes,et al.  Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids , 1981 .

[19]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .

[20]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[21]  Allan,et al.  Molecular dynamics and ab initio total energy calculations. , 1986, Physical review letters.

[22]  Teuvo Kohonen,et al.  An introduction to neural computing , 1988, Neural Networks.

[23]  Shinji Umeyama,et al.  An Eigendecomposition Approach to Weighted Graph Matching Problems , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1989, Math. Control. Signals Syst..

[25]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[26]  W S McCulloch,et al.  A logical calculus of the ideas immanent in nervous activity , 1990, The Philosophy of Artificial Intelligence.

[27]  G. Wahba Spline models for observational data , 1990 .

[28]  Grace Wahba,et al.  Spline Models for Observational Data , 1990 .

[29]  Kurt Hornik,et al.  Approximation capabilities of multilayer feedforward networks , 1991, Neural Networks.

[30]  N. L. Johnson,et al.  Breakthroughs in Statistics , 1992 .

[31]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[32]  H. Sebastian Seung,et al.  Query by committee , 1992, COLT '92.

[33]  Elie Bienenstock,et al.  Neural Networks and the Bias/Variance Dilemma , 1992, Neural Computation.

[34]  Hiroki Nakamura,et al.  The two‐state linear curve crossing problems revisited. III. Analytical approximations for Stokes constant and scattering matrix: Nonadiabatic tunneling case , 1993 .

[35]  B. Berne,et al.  Efficient molecular dynamics and hybrid Monte Carlo algorithms for path integrals , 1993 .

[36]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[37]  Hervé Abdi,et al.  A NEURAL NETWORK PRIMER , 1994 .

[38]  Vladimir Naumovich Vapni The Nature of Statistical Learning Theory , 1995 .

[39]  S. Plimpton,et al.  Short-Range Molecular Dynamics , 1995 .

[40]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[41]  Steven D. Brown,et al.  Neural network models of potential energy surfaces , 1995 .

[42]  Mark N. Gibbs,et al.  Combining ab initio computations, neural networks, and diffusion Monte Carlo: An efficient method to treat weakly bound molecules , 1996 .

[43]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[44]  David H. Wolpert,et al.  The Lack of A Priori Distinctions Between Learning Algorithms , 1996, Neural Computation.

[45]  G Reibnegger,et al.  Neural networks as a tool for compact representation of ab initio molecular potential energy surfaces. , 1996, Journal of Molecular Graphics.

[46]  Bernhard Schölkopf,et al.  Kernel Principal Component Analysis , 1997, ICANN.

[47]  Harold A. Scheraga,et al.  Description of the potential energy surface of the water dimer with an artificial neural network , 1997 .

[48]  Gunnar Rätsch,et al.  Predicting Time Series with Support Vector Machines , 1997, ICANN.

[49]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[50]  Bernhard Schölkopf,et al.  The connection between regularization operators and support vector kernels , 1998, Neural Networks.

[51]  J. J. Soares Neto,et al.  The fitting of potential energy surfaces using neural networks. Application to the study of the photodissociation processes , 1998 .

[52]  Ning Qian,et al.  On the momentum term in gradient descent learning algorithms , 1999, Neural Networks.

[53]  Gunnar Rätsch,et al.  Input space versus feature space in kernel-based methods , 1999, IEEE Trans. Neural Networks.

[54]  John W. Clark,et al.  Scientific Applications of Neural Nets , 1999 .

[55]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[56]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[57]  Christopher K. I. Williams,et al.  Using the Nyström Method to Speed Up Kernel Machines , 2000, NIPS.

[58]  Detlef Hommel,et al.  Thermal expansion of bulk and homoepitaxial GaN , 2000 .

[59]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[60]  A. V. Duin,et al.  ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .

[61]  Alexander J. Smola,et al.  Learning with Kernels: support vector machines, regularization, optimization, and beyond , 2001, Adaptive computation and machine learning series.

[62]  J. Berg,et al.  Molecular dynamics simulations of biomolecules , 2002, Nature Structural Biology.

[63]  Risi Kondor,et al.  Diffusion kernels on graphs and other discrete structures , 2002, ICML 2002.

[64]  J. van Leeuwen,et al.  Neural Networks: Tricks of the Trade , 2002, Lecture Notes in Computer Science.

[65]  Bertrand Guillot,et al.  A reappraisal of what we have learnt during three decades of computer simulations on water , 2002 .

[66]  Bin Liu,et al.  Thermal Expansion of Single Wall Carbon Nanotubes , 2004 .

[67]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[68]  A. Berlinet,et al.  Reproducing kernel Hilbert spaces in probability and statistics , 2004 .

[69]  M C Payne,et al.  "Learn on the fly": a hybrid classical and quantum-mechanical molecular dynamics simulation. , 2004, Physical review letters.

[70]  Mark S. Gordon,et al.  Advances in electronic structure theory , 2005 .

[71]  Carl E. Rasmussen,et al.  A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..

[72]  Zoubin Ghahramani,et al.  Sparse Gaussian Processes using Pseudo-inputs , 2005, NIPS.

[73]  R. Friesner Ab initio quantum chemistry: methodology and applications. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[74]  P. Wormer,et al.  Theory and Applications of Computational Chemistry The First Forty Years , 2005 .

[75]  Kwang S. Kim,et al.  Theory and applications of computational chemistry : the first forty years , 2005 .

[76]  Sergei Manzhos,et al.  A random-sampling high dimensional model representation neural network for building potential energy surfaces. , 2006, The Journal of chemical physics.

[77]  Stewart A. Adcock,et al.  Molecular dynamics: survey of methods for simulating the activity of proteins. , 2006, Chemical reviews.

[78]  Peter L. Freddolino,et al.  Molecular dynamics simulations of the complete satellite tobacco mosaic virus. , 2006, Structure.

[79]  V. Raykar,et al.  Fast large scale Gaussian process regression using approximate matrix-vector products , 2006 .

[80]  Michele Parrinello,et al.  Generalized neural-network representation of high-dimensional potential-energy surfaces. , 2007, Physical review letters.

[81]  Sergei Manzhos,et al.  Using redundant coordinates to represent potential energy surfaces with lower-dimensional functions. , 2007, The Journal of chemical physics.

[82]  Klaus-Robert Müller,et al.  Covariate Shift Adaptation by Importance Weighted Cross Validation , 2007, J. Mach. Learn. Res..

[83]  Frank Jensen,et al.  Force field modeling of conformational energies: Importance of multipole moments and intramolecular polarization , 2007 .

[84]  Benjamin Recht,et al.  Random Features for Large-Scale Kernel Machines , 2007, NIPS.

[85]  Arieh Warshel,et al.  Polarizable Force Fields:  History, Test Cases, and Prospects. , 2007, Journal of chemical theory and computation.

[86]  John L. Klepeis,et al.  Anton, a special-purpose machine for molecular dynamics simulation , 2007, ISCA '07.

[87]  Joachim M. Buhmann,et al.  On Relevant Dimensions in Kernel Feature Spaces , 2008, J. Mach. Learn. Res..

[88]  Jean-Philippe Vert,et al.  The optimal assignment kernel is not positive definite , 2008, ArXiv.

[89]  Alex Smola,et al.  Kernel methods in machine learning , 2007, math/0701907.

[90]  A. Tkatchenko,et al.  Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. , 2009, Physical review letters.

[91]  Ah Chung Tsoi,et al.  The Graph Neural Network Model , 2009, IEEE Transactions on Neural Networks.

[92]  Lorenz C. Blum,et al.  970 million druglike small molecules for virtual screening in the chemical universe database GDB-13. , 2009, Journal of the American Chemical Society.

[93]  M. Malshe,et al.  Development of generalized potential-energy surfaces using many-body expansions, neural networks, and moiety energy approximations. , 2009, The Journal of chemical physics.

[94]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[95]  Walter Thiel,et al.  QM/MM methods for biomolecular systems. , 2009, Angewandte Chemie.

[96]  Benjamin Lindner,et al.  Scaling of Multimillion-Atom Biological Molecular Dynamics Simulation on a Petascale Supercomputer. , 2009, Journal of chemical theory and computation.

[97]  Charles A. Micchelli,et al.  When is there a representer theorem? Vector versus matrix regularizers , 2008, J. Mach. Learn. Res..

[98]  Matthias Scheffler,et al.  Ab initio molecular simulations with numeric atom-centered orbitals , 2009, Comput. Phys. Commun..

[99]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[100]  Yoram Singer,et al.  Adaptive Subgradient Methods for Online Learning and Stochastic Optimization , 2011, J. Mach. Learn. Res..

[101]  E. Savaş On generalized A , 2010 .

[102]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[103]  R. Kondor,et al.  Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. , 2009, Physical review letters.

[104]  Simon Haykin,et al.  Neural Networks and Learning Machines , 2010 .

[105]  Klaus-Robert Müller,et al.  Kernel Analysis of Deep Networks , 2011, J. Mach. Learn. Res..

[106]  J. Behler Atom-centered symmetry functions for constructing high-dimensional neural network potentials. , 2011, The Journal of chemical physics.

[107]  M. Mezei,et al.  Molecular docking: a powerful approach for structure-based drug discovery. , 2011, Current computer-aided drug design.

[108]  M. A. González,et al.  Force fields and molecular dynamics simulations , 2011 .

[109]  Klaus-Robert Müller,et al.  Introduction to machine learning for brain imaging , 2011, NeuroImage.

[110]  Yoshua Bengio,et al.  Random Search for Hyper-Parameter Optimization , 2012, J. Mach. Learn. Res..

[111]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[112]  Jasper Snoek,et al.  Practical Bayesian Optimization of Machine Learning Algorithms , 2012, NIPS.

[113]  Andreas Ziehe,et al.  Learning Invariant Representations of Molecules for Atomization Energy Prediction , 2012, NIPS.

[114]  Jean-Louis Reymond,et al.  Enumeration of 166 Billion Organic Small Molecules in the Chemical Universe Database GDB-17 , 2012, J. Chem. Inf. Model..

[115]  Klaus-Robert Müller,et al.  Finding Density Functionals with Machine Learning , 2011, Physical review letters.

[116]  Jörg Behler,et al.  A neural network potential-energy surface for the water dimer based on environment-dependent atomic energies and charges. , 2012, The Journal of chemical physics.

[117]  H. Lischka,et al.  Multiconfiguration self-consistent field and multireference configuration interaction methods and applications. , 2012, Chemical reviews.

[118]  Grgoire Montavon,et al.  Neural Networks: Tricks of the Trade , 2012, Lecture Notes in Computer Science.

[119]  K. Müller,et al.  Fast and accurate modeling of molecular atomization energies with machine learning. , 2011, Physical review letters.

[120]  Klaus-Robert Müller,et al.  Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies. , 2013, Journal of chemical theory and computation.

[121]  Pengyu Y. Ren,et al.  The Polarizable Atomic Multipole-based AMOEBA Force Field for Proteins. , 2013, Journal of chemical theory and computation.

[122]  T. Morawietz,et al.  A density-functional theory-based neural network potential for water clusters including van der Waals corrections. , 2013, The journal of physical chemistry. A.

[123]  M. Rupp,et al.  Machine learning of molecular electronic properties in chemical compound space , 2013, 1305.7074.

[124]  Klaus Schulten,et al.  Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics , 2013, Nature.

[125]  Emppu Salonen,et al.  Polarizable force fields. , 2013, Methods in molecular biology.

[126]  Thomas F. Miller,et al.  Ring-polymer molecular dynamics: quantum effects in chemical dynamics from classical trajectories in an extended phase space. , 2013, Annual review of physical chemistry.

[127]  R. Kondor,et al.  On representing chemical environments , 2012, 1209.3140.

[128]  John M. Walker,et al.  Biomolecular Simulations , 2013, Methods in Molecular Biology.

[129]  D. Costarelli,et al.  Constructive Approximation by Superposition of Sigmoidal Functions , 2013 .

[130]  Alexander D. MacKerell,et al.  Force Field for Peptides and Proteins based on the Classical Drude Oscillator. , 2013, Journal of chemical theory and computation.

[131]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[132]  Kristof T. Schütt,et al.  How to represent crystal structures for machine learning: Towards fast prediction of electronic properties , 2013, 1307.1266.

[133]  Markus Meuwly,et al.  Multisurface Adiabatic Reactive Molecular Dynamics. , 2014, Journal of chemical theory and computation.

[134]  Pavlo O. Dral,et al.  Quantum chemistry structures and properties of 134 kilo molecules , 2014, Scientific Data.

[135]  Neha Agnihotri,et al.  Computational studies of charge transfer in organic solar photovoltaic cells: A review , 2014 .

[136]  K. Müller,et al.  Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and Nonlocality in Chemical Space , 2015, The journal of physical chemistry letters.

[137]  Zhenwei Li,et al.  Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces. , 2015, Physical review letters.

[138]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[139]  Gábor Csányi,et al.  Gaussian approximation potentials: A brief tutorial introduction , 2015, 1502.01366.

[140]  Felix A Faber,et al.  Crystal structure representations for machine learning models of formation energies , 2015, 1503.07406.

[141]  Nadav Cohen,et al.  On the Expressive Power of Deep Learning: A Tensor Analysis , 2015, COLT 2016.

[142]  Ole Winther,et al.  Convolutional LSTM Networks for Subcellular Localization of Proteins , 2015, AlCoB.

[143]  Lorenzo Rosasco,et al.  On Invariance and Selectivity in Representation Learning , 2015, ArXiv.

[144]  Frank Noé,et al.  PyEMMA 2: A Software Package for Estimation, Validation, and Analysis of Markov Models. , 2015, Journal of chemical theory and computation.

[145]  H. Hellmann,et al.  Einführung in die Quantenchemie , 2015 .

[146]  Alán Aspuru-Guzik,et al.  Convolutional Networks on Graphs for Learning Molecular Fingerprints , 2015, NIPS.

[147]  Jonathan Schaffer,et al.  What Not to Multiply Without Necessity , 2015 .

[148]  Jörg Behler,et al.  Constructing high‐dimensional neural network potentials: A tutorial review , 2015 .

[149]  Sergios Theodoridis,et al.  Machine Learning: A Bayesian and Optimization Perspective , 2015 .

[150]  P. Hermet,et al.  Origin of the highly anisotropic thermal expansion of the semiconducting ZnSb and relations with its thermoelectric applications , 2015 .

[151]  Stefan Goedecker,et al.  Interatomic potentials for ionic systems with density functional accuracy based on charge densities obtained by a neural network , 2015, 1501.07344.

[152]  Thomas Spura,et al.  Correction: "On-the-fly" coupled cluster path-integral molecular dynamics: impact of nuclear quantum effects on the protonated water dimer. , 2015, Physical chemistry chemical physics : PCCP.

[153]  F. Noé,et al.  Dynamic properties of force fields. , 2015, The Journal of chemical physics.

[154]  Thomas Spura,et al.  "On-the-fly" coupled cluster path-integral molecular dynamics: impact of nuclear quantum effects on the protonated water dimer. , 2015, Physical chemistry chemical physics : PCCP.

[155]  E. Paquet,et al.  Molecular Dynamics, Monte Carlo Simulations, and Langevin Dynamics: A Computational Review , 2015, BioMed research international.

[156]  O. A. von Lilienfeld,et al.  Communication: Understanding molecular representations in machine learning: The role of uniqueness and target similarity. , 2016, The Journal of chemical physics.

[157]  Felix A Faber,et al.  Machine Learning Energies of 2 Million Elpasolite (ABC_{2}D_{6}) Crystals. , 2015, Physical review letters.

[158]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[159]  Vijay S. Pande,et al.  Molecular graph convolutions: moving beyond fingerprints , 2016, Journal of Computer-Aided Molecular Design.

[160]  T. Morawietz,et al.  How van der Waals interactions determine the unique properties of water , 2016, Proceedings of the National Academy of Sciences.

[161]  Michael A. Osborne,et al.  Preconditioning Kernel Matrices , 2016, ICML.

[162]  Sebastian Ruder,et al.  An overview of gradient descent optimization algorithms , 2016, Vestnik komp'iuternykh i informatsionnykh tekhnologii.

[163]  Rampi Ramprasad,et al.  Machine Learning Force Fields: Construction, Validation, and Outlook , 2016, 1610.02098.

[164]  Oliver T. Unke,et al.  Collision-induced rotational excitation in N2 (+)((2)Σg (+),v=0)-Ar: Comparison of computations and experiment. , 2016, The Journal of chemical physics.

[165]  Heather J. Kulik,et al.  How Large Should the QM Region Be in QM/MM Calculations? The Case of Catechol O-Methyltransferase , 2015, The journal of physical chemistry. B.

[166]  Ohad Shamir,et al.  The Power of Depth for Feedforward Neural Networks , 2015, COLT.

[167]  A. Tkatchenko,et al.  Modeling quantum nuclei with perturbed path integral molecular dynamics† †Electronic supplementary information (ESI) available: Heat capacity estimator and first and second-order cumulant expansions of the TI approach. See DOI: 10.1039/c5sc03443d , 2015, Chemical science.

[168]  Alireza Khorshidi,et al.  Amp: A modular approach to machine learning in atomistic simulations , 2016, Comput. Phys. Commun..

[169]  Samy Bengio,et al.  Order Matters: Sequence to sequence for sets , 2015, ICLR.

[170]  Gábor Csányi,et al.  Comparing molecules and solids across structural and alchemical space. , 2015, Physical chemistry chemical physics : PCCP.

[171]  Nils M. Kriege,et al.  On Valid Optimal Assignment Kernels and Applications to Graph Classification , 2016, NIPS.

[172]  Zoubin Ghahramani,et al.  Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning , 2015, ICML.

[173]  Oliver T. Unke,et al.  Quantum and quasiclassical trajectory studies of rotational relaxation in Ar-N2+ collisions. , 2017, Physical chemistry chemical physics : PCCP.

[174]  Alexandre Tkatchenko,et al.  Quantum-chemical insights from deep tensor neural networks , 2016, Nature Communications.

[175]  Li Li,et al.  Bypassing the Kohn-Sham equations with machine learning , 2016, Nature Communications.

[176]  Matthias Rupp,et al.  Unified representation of molecules and crystals for machine learning , 2017, Mach. Learn. Sci. Technol..

[177]  Ole Winther,et al.  DeepLoc: prediction of protein subcellular localization using deep learning , 2017, Bioinform..

[178]  Klaus-Robert Müller,et al.  Machine learning of accurate energy-conserving molecular force fields , 2016, Science Advances.

[179]  Michael Walter,et al.  The atomic simulation environment-a Python library for working with atoms. , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[180]  Thomas E Markland,et al.  Proton Network Flexibility Enables Robustness and Large Electric Fields in the Ketosteroid Isomerase Active Site. , 2017, The journal of physical chemistry. B.

[181]  Liwei Wang,et al.  The Expressive Power of Neural Networks: A View from the Width , 2017, NIPS.

[182]  Hao Wu,et al.  VAMPnets for deep learning of molecular kinetics , 2017, Nature Communications.

[183]  Lorenzo Rosasco,et al.  FALKON: An Optimal Large Scale Kernel Method , 2017, NIPS.

[184]  Jan Hermann,et al.  First-Principles Models for van der Waals Interactions in Molecules and Materials: Concepts, Theory, and Applications. , 2017, Chemical reviews.

[185]  J. Behler First Principles Neural Network Potentials for Reactive Simulations of Large Molecular and Condensed Systems. , 2017, Angewandte Chemie.

[186]  Volker L. Deringer,et al.  Machine learning based interatomic potential for amorphous carbon , 2016, 1611.03277.

[187]  Noam Bernstein,et al.  Machine learning unifies the modeling of materials and molecules , 2017, Science Advances.

[188]  Stéphane Mallat,et al.  Wavelet Scattering Regression of Quantum Chemical Energies , 2016, Multiscale Model. Simul..

[189]  Gerbrand Ceder,et al.  Efficient and accurate machine-learning interpolation of atomic energies in compositions with many species , 2017, 1706.06293.

[190]  Hillary Sanders,et al.  GARBAGE IN, GARBAGE OUT: HOW PURPORTEDLY GREAT ML MODELS CAN BE SCREWED UP BY BAD DATA , 2017 .

[191]  Markus Meuwly,et al.  Toolkit for the Construction of Reproducing Kernel-Based Representations of Data: Application to Multidimensional Potential Energy Surfaces , 2017, J. Chem. Inf. Model..

[192]  Markus Meuwly,et al.  Minimal distributed charges: Multipolar quality at the cost of point charge electrostatics. , 2017, The Journal of chemical physics.

[193]  Michael Gastegger,et al.  Machine learning molecular dynamics for the simulation of infrared spectra† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc02267k , 2017, Chemical science.

[194]  Samuel S. Schoenholz,et al.  Neural Message Passing for Quantum Chemistry , 2017, ICML.

[195]  Richard D Wilkinson,et al.  Interpolation of intermolecular potentials using Gaussian processes. , 2017, The Journal of chemical physics.

[196]  Matthias Troyer,et al.  Solving the quantum many-body problem with artificial neural networks , 2016, Science.

[197]  J S Smith,et al.  ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost , 2016, Chemical science.

[198]  Stéphane Mallat,et al.  Solid Harmonic Wavelet Scattering: Predicting Quantum Molecular Energy from Invariant Descriptors of 3D Electronic Densities , 2017, NIPS.

[199]  O. Anatole von Lilienfeld,et al.  The "DNA" of chemistry: Scalable quantum machine learning with "amons" , 2017, 1707.04146.

[200]  Aditya Kamath,et al.  Neural networks vs Gaussian process regression for representing potential energy surfaces: A comparative study of fit quality and vibrational spectrum accuracy. , 2018, The Journal of chemical physics.

[201]  E Weinan,et al.  End-to-end Symmetry Preserving Inter-atomic Potential Energy Model for Finite and Extended Systems , 2018, NeurIPS.

[202]  Adrian E. Roitberg,et al.  Less is more: sampling chemical space with active learning , 2018, The Journal of chemical physics.

[203]  Noam Bernstein,et al.  Machine Learning a General-Purpose Interatomic Potential for Silicon , 2018, Physical Review X.

[204]  K. Müller,et al.  Towards exact molecular dynamics simulations with machine-learned force fields , 2018, Nature Communications.

[205]  E Weinan,et al.  Deep Potential Molecular Dynamics: a scalable model with the accuracy of quantum mechanics , 2017, Physical review letters.

[206]  Anders S. Christensen,et al.  Alchemical and structural distribution based representation for universal quantum machine learning. , 2017, The Journal of chemical physics.

[207]  Jaehoon Lee,et al.  Deep Neural Networks as Gaussian Processes , 2017, ICLR.

[208]  Jörg Behler,et al.  Nuclear Quantum Effects in Sodium Hydroxide Solutions from Neural Network Molecular Dynamics Simulations. , 2018, The journal of physical chemistry. B.

[209]  Hao Wu,et al.  Deep Generative Markov State Models , 2018, NeurIPS.

[210]  Vasily V. Bulatov,et al.  Quantum effects on dislocation motion from ring-polymer molecular dynamics , 2017, npj Computational Materials.

[211]  Sameer Varma,et al.  Machine learning approaches to evaluate correlation patterns in allosteric signaling: A case study of the PDZ2 domain. , 2018, The Journal of chemical physics.

[212]  Andrea Grisafi,et al.  Symmetry-Adapted Machine Learning for Tensorial Properties of Atomistic Systems. , 2017, Physical review letters.

[213]  M Gastegger,et al.  wACSF-Weighted atom-centered symmetry functions as descriptors in machine learning potentials. , 2017, The Journal of chemical physics.

[214]  Alexandre Tkatchenko,et al.  Perturbed path integrals in imaginary time: Efficiently modeling nuclear quantum effects in molecules and materials. , 2018, The Journal of chemical physics.

[215]  J. Niedziela,et al.  Nuclear quantum effect with pure anharmonicity and the anomalous thermal expansion of silicon , 2016, Proceedings of the National Academy of Sciences.

[216]  Max Welling,et al.  3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data , 2018, NeurIPS.

[217]  E Weinan,et al.  DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics , 2017, Comput. Phys. Commun..

[218]  Feliks Nüske,et al.  Sparse learning of stochastic dynamical equations. , 2017, The Journal of chemical physics.

[219]  David W Toth,et al.  The TensorMol-0.1 model chemistry: a neural network augmented with long-range physics , 2017, Chemical science.

[220]  Michele Parrinello,et al.  Silicon Liquid Structure and Crystal Nucleation from Ab Initio Deep Metadynamics. , 2018, Physical review letters.

[221]  Markus Meuwly,et al.  A reactive, scalable, and transferable model for molecular energies from a neural network approach based on local information. , 2018, The Journal of chemical physics.

[222]  Michael Gastegger,et al.  Generating equilibrium molecules with deep neural networks , 2018, ArXiv.

[223]  Cecilia Clementi,et al.  Learning Effective Molecular Models from Experimental Observables. , 2018, Journal of chemical theory and computation.

[224]  Justin S. Smith,et al.  Hierarchical modeling of molecular energies using a deep neural network. , 2017, The Journal of chemical physics.

[225]  Hua Guo,et al.  Constructing High-Dimensional Neural Network Potential Energy Surfaces for Gas–Surface Scattering and Reactions , 2018 .

[226]  Geoffrey J. Gordon,et al.  A Density Functional Tight Binding Layer for Deep Learning of Chemical Hamiltonians. , 2018, Journal of chemical theory and computation.

[227]  Frank Noé,et al.  Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics , 2017, The Journal of chemical physics.

[228]  Noam Bernstein,et al.  Realistic Atomistic Structure of Amorphous Silicon from Machine-Learning-Driven Molecular Dynamics. , 2018, The journal of physical chemistry letters.

[229]  D. Marx,et al.  Converged Colored Noise Path Integral Molecular Dynamics Study of the Zundel Cation Down to Ultralow Temperatures at Coupled Cluster Accuracy. , 2018, Journal of chemical theory and computation.

[230]  Risi Kondor,et al.  Predicting molecular properties with covariant compositional networks. , 2018, The Journal of chemical physics.

[231]  Alexandre Tkatchenko,et al.  Quantum tunneling of thermal protons through pristine graphene. , 2016, The Journal of chemical physics.

[232]  K-R Müller,et al.  SchNet - A deep learning architecture for molecules and materials. , 2017, The Journal of chemical physics.

[233]  John E Herr,et al.  Metadynamics for training neural network model chemistries: A competitive assessment. , 2017, The Journal of chemical physics.

[234]  Richard E. Turner,et al.  Gaussian Process Behaviour in Wide Deep Neural Networks , 2018, ICLR.

[235]  Michele Ceriotti,et al.  Nuclear quantum effects enter the mainstream , 2018, 1803.01037.

[236]  Wei-Hai Fang,et al.  Deep Learning for Nonadiabatic Excited-State Dynamics. , 2018, The journal of physical chemistry letters.

[237]  Feliks Nüske,et al.  Coarse-graining molecular systems by spectral matching. , 2019, The Journal of chemical physics.

[238]  Oliver T. Unke,et al.  Reactive dynamics and spectroscopy of hydrogen transfer from neural network-based reactive potential energy surfaces , 2019, New Journal of Physics.

[239]  Oliver T. Unke,et al.  Exhaustive state-to-state cross sections for reactive molecular collisions from importance sampling simulation and a neural network representation. , 2019, The Journal of chemical physics.

[240]  Andrea Grisafi,et al.  Using Gaussian process regression to simulate the vibrational Raman spectra of molecular crystals , 2019, New Journal of Physics.

[241]  Markus Meuwly,et al.  PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments, and Partial Charges. , 2019, Journal of chemical theory and computation.

[242]  F. Noé,et al.  Kernel methods for detecting coherent structures in dynamical data. , 2019, Chaos.

[243]  Frank Noé,et al.  Targeted Adversarial Learning Optimized Sampling. , 2019, The journal of physical chemistry letters.

[244]  Anders S. Christensen,et al.  Operators in quantum machine learning: Response properties in chemical space. , 2018, The Journal of chemical physics.

[245]  Stefan Chmiela,et al.  Towards exact molecular dynamics simulations with invariant machine-learned models , 2019 .

[246]  Weitao Yang,et al.  Solvation Free Energy Calculations with Quantum Mechanics/Molecular Mechanics and Machine Learning Models. , 2018, The journal of physical chemistry. B.

[247]  Lu-Ming Duan,et al.  Machine learning meets quantum physics , 2019, Physics Today.

[248]  Wei Chen,et al.  Nonlinear Discovery of Slow Molecular Modes using Hierarchical Dynamics Encoders , 2019, The Journal of chemical physics.

[249]  Kristof T. Schütt,et al.  Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions , 2019, Nature Communications.

[250]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[251]  Klaus-Robert Müller,et al.  Quantum-chemical insights from interpretable atomistic neural networks , 2018, Explainable AI.

[252]  Alexander Binder,et al.  Unmasking Clever Hans predictors and assessing what machines really learn , 2019, Nature Communications.

[253]  Markus Meuwly,et al.  Sampling reactive regions in phase space by following the minimum dynamic path. , 2019, The Journal of chemical physics.

[254]  Wei Chen,et al.  High-Resolution Markov State Models for the Dynamics of Trp-Cage Miniprotein Constructed over Slow Folding Modes Identified by State-Free Reversible VAMPnets. , 2019, The journal of physical chemistry. B.

[255]  F. Noé,et al.  Machine learning for protein folding and dynamics. , 2019, Current opinion in structural biology.

[256]  Yang Yang,et al.  Accurate molecular polarizabilities with coupled cluster theory and machine learning , 2018, Proceedings of the National Academy of Sciences.

[257]  Klaus-Robert Müller,et al.  Molecular force fields with gradient-domain machine learning: Construction and application to dynamics of small molecules with coupled cluster forces. , 2019, The Journal of chemical physics.

[258]  Volker L. Deringer,et al.  Machine Learning Interatomic Potentials as Emerging Tools for Materials Science , 2019, Advanced materials.

[259]  Klaus-Robert Müller,et al.  sGDML: Constructing accurate and data efficient molecular force fields using machine learning , 2018, Comput. Phys. Commun..

[260]  K-R Müller,et al.  SchNetPack: A Deep Learning Toolbox For Atomistic Systems. , 2018, Journal of chemical theory and computation.

[261]  Steven Vandenbrande,et al.  i-PI 2.0: A universal force engine for advanced molecular simulations , 2018, Comput. Phys. Commun..

[262]  Hao Wu,et al.  Boltzmann generators: Sampling equilibrium states of many-body systems with deep learning , 2018, Science.

[263]  Risi Kondor,et al.  Cormorant: Covariant Molecular Neural Networks , 2019, NeurIPS.

[264]  Jonathan T. Barron,et al.  A General and Adaptive Robust Loss Function , 2017, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[265]  Michael Gastegger,et al.  Symmetry-adapted generation of 3d point sets for the targeted discovery of molecules , 2019, NeurIPS.

[266]  Frank Noé,et al.  Generating valid Euclidean distance matrices , 2019, ArXiv.

[267]  Bin Jiang,et al.  Embedded Atom Neural Network Potentials: Efficient and Accurate Machine Learning with a Physically Inspired Representation. , 2019, The journal of physical chemistry letters.

[268]  Mariana Rossi,et al.  Elucidating the Nuclear Quantum Dynamics of Intramolecular Double Hydrogen Transfer in Porphycene , 2018, Journal of the American Chemical Society.

[269]  Frank Noé,et al.  Efficient multi-objective molecular optimization in a continuous latent space† †Electronic supplementary information (ESI) available: Details of the desirability scaling functions, high resolution figures and detailed results of the GuacaMol benchmark. See DOI: 10.1039/c9sc01928f , 2019, Chemical science.

[270]  Markus Meuwly,et al.  Reactive molecular dynamics for the [Cl–CH3–Br]− reaction in the gas phase and in solution: a comparative study using empirical and neural network force fields , 2019, Electronic Structure.

[271]  Markus Meuwly,et al.  Reactive atomistic simulations of Diels-Alder reactions: The importance of molecular rotations. , 2019, The Journal of chemical physics.

[272]  Supplementary datasets for "DScribe: Library of Descriptors for Machine Learning in Materials Science" , 2019 .

[273]  Frank Noé,et al.  Machine Learning of Coarse-Grained Molecular Dynamics Force Fields , 2018, ACS central science.

[274]  Alexandre Tkatchenko,et al.  Accurate Many-Body Repulsive Potentials for Density-Functional Tight Binding from Deep Tensor Neural Networks. , 2020, The journal of physical chemistry letters.

[275]  Oliver T. Unke,et al.  Thermal activation of methane by MgO+: temperature dependent kinetics, reactive molecular dynamics simulations and statistical modeling. , 2020, Physical chemistry chemical physics : PCCP.

[276]  K. Müller,et al.  Molecular force fields with gradient-domain machine learning (GDML): Comparison and synergies with classical force fields. , 2020, The Journal of chemical physics.

[277]  Oliver T. Unke,et al.  High-dimensional potential energy surfaces for molecular simulations: from empiricism to machine learning , 2019, Mach. Learn. Sci. Technol..

[278]  E Weinan,et al.  Pushing the Limit of Molecular Dynamics with Ab Initio Accuracy to 100 Million Atoms with Machine Learning , 2020, SC20: International Conference for High Performance Computing, Networking, Storage and Analysis.

[279]  Frank Noé,et al.  Equivariant Flows: exact likelihood generative learning for symmetric densities , 2020, ICML.

[280]  Demis Hassabis,et al.  Improved protein structure prediction using potentials from deep learning , 2020, Nature.

[281]  T. Carrington,et al.  Neural Network Potential Energy Surfaces for Small Molecules and Reactions. , 2020, Chemical reviews.

[282]  Bing Huang,et al.  Quantum machine learning using atom-in-molecule-based fragments selected on the fly , 2017, Nature Chemistry.

[283]  José Miguel Hernández-Lobato,et al.  Reinforcement Learning for Molecular Design Guided by Quantum Mechanics , 2020, ICML.

[284]  F. Noé,et al.  Deep-neural-network solution of the electronic Schrödinger equation , 2019, Nature Chemistry.

[285]  Lars A. Bratholm,et al.  FCHL revisited: Faster and more accurate quantum machine learning. , 2019, The Journal of chemical physics.

[286]  John D. Chodera,et al.  SARS-CoV-2 Simulations Go Exascale to Capture Spike Opening and Reveal Cryptic Pockets Across the Proteome , 2020, bioRxiv.

[287]  Stephan Günnemann,et al.  Directional Message Passing for Molecular Graphs , 2020, ICLR.

[288]  Kristof T. Schütt,et al.  A deep neural network for molecular wave functions in quasi-atomic minimal basis representation. , 2020, The Journal of chemical physics.

[289]  Hua Guo,et al.  Comprehensive Investigations of the Cl + CH 3 OH → HCl + CH 3 O/CH 2 OH Reaction: Validation of Experiment and Dynamic Insights , 2020 .

[290]  Cecilia Clementi,et al.  Ensemble learning of coarse-grained molecular dynamics force fields with a kernel approach. , 2020, The Journal of chemical physics.

[291]  K. Müller,et al.  Exploring chemical compound space with quantum-based machine learning , 2019, Nature Reviews Chemistry.

[292]  R. Car,et al.  Raman spectrum and polarizability of liquid water from deep neural networks. , 2020, Physical chemistry chemical physics : PCCP.

[293]  A. Tkatchenko,et al.  Machine Learning Meets Quantum Physics , 2020, Lecture Notes in Physics.

[294]  Marwin H. S. Segler,et al.  Machine learning the ropes: principles, applications and directions in synthetic chemistry. , 2020, Chemical Society reviews.

[295]  A. Hauser,et al.  Machine Learning Approaches toward Orbital-free Density Functional Theory: Simultaneous Training on the Kinetic Energy Density Functional and Its Functional Derivative , 2020, Journal of chemical theory and computation.

[296]  Julia Westermayr,et al.  Combining SchNet and SHARC: The SchNarc Machine Learning Approach for Excited-State Dynamics , 2020, The journal of physical chemistry letters.

[297]  Frank Noé,et al.  Machine learning for molecular simulation , 2019, Annual review of physical chemistry.

[298]  P. Marquetand,et al.  Machine Learning for Electronically Excited States of Molecules , 2020, Chemical reviews.

[299]  O. Anatole von Lilienfeld,et al.  On the role of gradients for machine learning of molecular energies and forces , 2020, Mach. Learn. Sci. Technol..

[300]  Oliver T. Unke,et al.  Isomerization and decomposition reactions of acetaldehyde relevant to atmospheric processes from dynamics simulations on neural network-based potential energy surfaces. , 2020, The Journal of chemical physics.

[301]  R. Car,et al.  Free energy of proton transfer at the water–TiO2 interface from ab initio deep potential molecular dynamics† , 2020, Chemical science.

[302]  Christopher N Rowley,et al.  Simulating protein–ligand binding with neural network potentials† , 2020, Chemical science.

[303]  A. Selloni Free Energy of Water Dissociation at the Water - TiO2 Interface from Ab Initio Deep Potential Molecular Dynamics , 2020 .

[304]  K. Müller,et al.  Quantum chemical accuracy from density functional approximations via machine learning , 2020, Nature Communications.

[305]  Jonas A. Finkler,et al.  A fourth-generation high-dimensional neural network potential with accurate electrostatics including non-local charge transfer , 2020, Nature Communications.

[306]  K. Müller,et al.  Dynamical strengthening of covalent and non-covalent molecular interactions by nuclear quantum effects at finite temperature , 2020, Nature communications.

[307]  M. Gastegger,et al.  Machine learning enables long time scale molecular photodynamics simu- lations , 2021 .