Structural evidence for adaptive ligand binding of glycolipid transfer protein.

[1]  M. G. Rossmann,et al.  International Tables for Crystallography: Crystallography of biological macromolecules , 2006 .

[2]  L. Malinina,et al.  Point Mutational Analysis of the Liganding Site in Human Glycolipid Transfer Protein , 2005, Journal of Biological Chemistry.

[3]  P. Mattjus,et al.  Protein mediated glycolipid transfer is inhibited FROM sphingomyelin membranes but enhanced TO sphingomyelin containing raft like membranes. , 2005, Biochimica et biophysica acta.

[4]  V S Lamzin,et al.  Modelling bound ligands in protein crystal structures. , 2004, Acta crystallographica. Section D, Biological crystallography.

[5]  Dinshaw J. Patel,et al.  Structural basis for glycosphingolipid transfer specificity , 2004, Nature.

[6]  G. van Meer,et al.  The cell biology of glycosphingolipids. , 2004, Seminars in cell & developmental biology.

[7]  Mats Gyllenberg,et al.  BODIL: a molecular modeling environment for structure-function analysis and drug design , 2004, J. Comput. Aided Mol. Des..

[8]  H. Kidron,et al.  Crystallization and X-ray analysis of bovine glycolipid transfer protein. , 2004, Acta crystallographica. Section D, Biological crystallography.

[9]  G. van Meer,et al.  The fate and function of glycosphingolipid glucosylceramide. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[10]  B. Turcq,et al.  Glycolipid intermembrane transfer is accelerated by HET-C2, a filamentous fungus gene product involved in the cell-cell incompatibility response. , 2003, Biochemistry.

[11]  Thomas C. Terwilliger,et al.  Electronic Reprint Biological Crystallography Automated Main-chain Model Building by Template Matching and Iterative Fragment Extension , 2022 .

[12]  J. Mundy,et al.  Knockout of Arabidopsis accelerated-cell-death11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense. , 2002, Genes & development.

[13]  A. Windebank,et al.  Cloning and Expression of Glycolipid Transfer Protein from Bovine and Porcine Brain* , 2000, The Journal of Biological Chemistry.

[14]  H. Pike,et al.  Charged membrane surfaces impede the protein-mediated transfer of glycosphingolipids between phospholipid bilayers. , 2000, Biochemistry.

[15]  Anastassis Perrakis,et al.  Automated protein model building combined with iterative structure refinement , 1999, Nature Structural Biology.

[16]  Thomas C. Terwilliger,et al.  Automated MAD and MIR structure solution , 1999, Acta crystallographica. Section D, Biological crystallography.

[17]  Rhoderick E. Brown,et al.  A fluorescence resonance energy transfer approach for monitoring protein-mediated glycolipid transfer between vesicle membranes. , 1999, Analytical biochemistry.

[18]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[19]  R. Laskowski SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. , 1995, Journal of molecular graphics.

[20]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[21]  B. Turcq,et al.  Inactivation of the Podospora anserina vegetative incompatibility locus het-c, whose product resembles a glycolipid transfer protein, drastically impairs ascospore production. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[22]  D. Warnock,et al.  Transport of newly synthesized glucosylceramide to the plasma membrane by a non-Golgi pathway. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[23]  T. Blundell,et al.  Comparative protein modelling by satisfaction of spatial restraints. , 1993, Journal of molecular biology.

[24]  Wolfgang Kabsch,et al.  Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants , 1993 .

[25]  John P. Overington,et al.  A structural basis for sequence comparisons. An evaluation of scoring methodologies. , 1993, Journal of molecular biology.

[26]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[27]  F. Wieland,et al.  Glucosylceramide is synthesized at the cytosolic surface of various Golgi subfractions , 1992, The Journal of cell biology.

[28]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[29]  Terukatsu Sasaki,et al.  Glycolipid transfer protein and intracellular traffic of glucosylceramide , 1990, Experientia.

[30]  A. Abe Primary structure of glycolipid transfer protein from pig brain. , 1990, Journal of Biological Chemistry.

[31]  G Vriend,et al.  WHAT IF: a molecular modeling and drug design program. , 1990, Journal of molecular graphics.

[32]  Terukatsu Sasaki,et al.  Formation of an intramolecular disulfide bond of glycolipid transfer protein. , 1989, Biochimica et biophysica acta.

[33]  Terukatsu Sasaki,et al.  Sulfhydryl groups in glycolipid transfer protein: formation of an intramolecular disulfide bond and oligomers by Cu2+-catalyzed oxidation. , 1989, Biochimica et biophysica acta.

[34]  M. N. Vyas,et al.  Sugar and signal-transducer binding sites of the Escherichia coli galactose chemoreceptor protein. , 1988, Science.

[35]  Akira Abe,et al.  Glycolipid transfer protein from pig brain transfers glycolipids with β-linked sugars but not with α-linked sugars at the sugar-lipid linkage , 1986 .

[36]  T. E. Thompson,et al.  Properties of a specific glycolipid transfer protein from bovine brain. , 1985, Chemistry and physics of lipids.

[37]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[38]  Gerard J. Kleywegt,et al.  Chapter 17.1 Around O , 2006 .

[39]  T. Hahn International tables for crystallography , 2002 .

[40]  V S Lamzin,et al.  Automated refinement of protein models. , 1993, Acta crystallographica. Section D, Biological crystallography.

[41]  G J Barton,et al.  ALSCRIPT: a tool to format multiple sequence alignments. , 1993, Protein engineering.

[42]  Terukatsu Sasaki,et al.  Glycolipid transfer protein from pig brain. , 1989, Methods in enzymology.

[43]  Thomas C. Terwilliger,et al.  Electronic Reprint Biological Crystallography Maximum-likelihood Density Modification , 2022 .