A generalization of Miller’s primality theorem
暂无分享,去创建一个
[1] Pedro Berrizbeitia,et al. Generalized Strong Pseudoprime Tests and Applications , 2000, J. Symb. Comput..
[2] Jon Grantham,et al. A Probable Prime Test with High Confidence , 1998, 1903.06823.
[3] M. Rabin. Probabilistic algorithm for testing primality , 1980 .
[4] Kazuya Kato,et al. Number Theory 1 , 1999 .
[5] Volker Strassen,et al. A Fast Monte-Carlo Test for Primality , 1977, SIAM J. Comput..
[6] Andrew Granville,et al. It is easy to determine whether a given integer is prime , 2004 .
[7] E. Bach. Analytic methods in the analysis and design of number-theoretic algorithms , 1985 .
[8] Gary L. Miller. Riemann's Hypothesis and Tests for Primality , 1976, J. Comput. Syst. Sci..
[9] N. Ankeny. The least quadratic non residue , 1952 .
[10] Louis Monier,et al. Evaluation and Comparison of Two Efficient Probabilistic Primality Testing Algorithms , 1980, Theor. Comput. Sci..
[11] Manindra Agrawal,et al. PRIMES is in P , 2004 .
[12] Pedro Berrizbeitia,et al. Sharpening "Primes is in P" for a large family of numbers , 2002, Math. Comput..