Optimal control in non-convex domains: a priori discretization error estimates
暂无分享,去创建一个
Arnd Rösch | Gunter Winkler | Thomas Apel | A. Rösch | T. Apel | G. Winkler
[1] Fredi Tröltzsch,et al. Error Estimates for the Numerical Approximation of Boundary Semilinear Elliptic Control Problems , 2005, Comput. Optim. Appl..
[2] M. Dauge. Elliptic boundary value problems on corner domains , 1988 .
[3] Fredi Tröltzsch,et al. Error Estimates for the Numerical Approximation of a Semilinear Elliptic Control Problem , 2002, Comput. Optim. Appl..
[4] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[5] J. Roßmann,et al. Elliptic Boundary Value Problems in Domains with Point Singularities , 2002 .
[6] Arnd Rösch,et al. Error estimates for linear-quadratic control problems with control constraints , 2006, Optim. Methods Softw..
[7] E. N. Dancer. ELLIPTIC PROBLEMS IN DOMAINS WITH PIECEWISE SMOOTH BOUNDARIES (de Gruyter Expositions in Mathematics 13) , 1996 .
[8] L. A. Rukhovets,et al. Variational-difference schemes for linear second-order elliptic equations in a two-dimensional region with piecewise smooth boundary , 1968 .
[9] T. Geveci,et al. On the approximation of the solution of an optimal control problem governed by an elliptic equation , 1979 .
[10] Arnd Rösch,et al. Superconvergence Properties of Optimal Control Problems , 2004, SIAM J. Control. Optim..
[11] Fredi Tröltzsch,et al. Error estimates for linear-quadratic elliptic control problems , 2002, Analysis and Optimization of Differential Systems.
[12] Michael Hinze,et al. A Variational Discretization Concept in Control Constrained Optimization: The Linear-Quadratic Case , 2005, Comput. Optim. Appl..
[13] Eduardo Casas,et al. Using piecewise linear functions in the numerical approximation of semilinear elliptic control problems , 2007, Adv. Comput. Math..
[14] Arnd Rösch,et al. Error Estimates for Parabolic Optimal Control Problems with Control Constraints , 2004 .
[15] Thomas Apel. Interpolation in h‐Version Finite Element Spaces , 2004 .
[16] I. Babuška,et al. Direct and inverse error estimates for finite elements with mesh refinements , 1979 .
[17] A. H. Schatz,et al. Maximum norm estimates in the finite element method on plane polygonal domains. II. Refinements , 1979 .
[18] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[19] Arnd Rösch,et al. Primal-Dual Active Set Strategy for a General Class of Constrained Optimal Control Problems , 2002, SIAM J. Optim..
[20] K. Malanowski. Convergence of approximations vs. regularity of solutions for convex, control-constrained optimal-control problems , 1982 .
[21] Arnd Rösch,et al. LINFINITY-Estimates for Approximated Optimal Control Problems , 2005, SIAM J. Control. Optim..
[22] Richard S. Falk,et al. Approximation of a class of optimal control problems with order of convergence estimates , 1973 .
[23] Thomas Apel,et al. Graded Mesh Refinement and Error Estimates for Finite Element Solutions of Elliptic Boundary Value P , 1996 .
[24] A. H. Schatz,et al. Maximum norm estimates in the finite element method on plane polygonal domains. I , 1978 .