Stability analysis of linear time-varying systems: Improving conditions by adding more information about parameter variation

Abstract In this paper a new Lyapunov function is proposed for stability analysis of linear time-varying systems. This new function carries more information regarding parameter variation leading to less conservative conditions. Using Finsler’s lemma and a suitable form to describe the high-order time-derivatives of the parameters, finite sets of LMIs are obtained which are progressively less conservative as a pair of parameters grow. Previous results can be seen as a special case and numerical examples are carried out for the sake of illustration.

[1]  P. Gahinet,et al.  Affine parameter-dependent Lyapunov functions and real parametric uncertainty , 1996, IEEE Trans. Autom. Control..

[2]  Karolos M. Grigoriadis,et al.  A unified algebraic approach to linear control design , 1998 .

[3]  Pedro L. D. Peres,et al.  A new LMI condition for the robust stability of linear time-varying systems , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[4]  R. Palhares,et al.  Equivalent techniques, extra comparisons and less conservative control design for Takagi¿Sugeno (TS) fuzzy systems , 2010 .

[5]  Graziano Chesi,et al.  Robust stability of time-varying polytopic systems via parameter-dependent homogeneous Lyapunov functions , 2007, Autom..

[6]  Robert E. Skelton,et al.  On stability tests for linear systems , 2002 .

[7]  Ricardo C. L. F. Oliveira,et al.  Stability analysis and gain-scheduled state feedback control for continuous-time systems with bounded parameter variations , 2009, Int. J. Control.

[8]  Patrizio Colaneri,et al.  Robust stability of time varying polytopic systems , 2006, Syst. Control. Lett..

[9]  Ricardo H. C. Takahashi,et al.  New strategy for robust stability analysis of discrete-time uncertain systems , 2007, Syst. Control. Lett..

[10]  Graziano Chesi Time-invariant uncertain systems: A necessary and sufficient condition for stability and instability via homogeneous parameter-dependent quadratic Lyapunov functions , 2010, Autom..

[11]  Graziano Chesi,et al.  Parameter-dependent homogeneous Lyapunov functions for robust stability of linear time-varying systems , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[12]  D. Peaucelle,et al.  Robust Performance Analysis of Linear Time-Invariant Uncertain Systems by Taking Higher-Order Time-Derivatives of the State , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[13]  Valentina Orsini,et al.  LMI Conditions for the Stability of Linear Uncertain Polynomially Time-Varying Systems , 2009, IEEE Transactions on Automatic Control.

[14]  Javad Lavaei,et al.  Performance improvement of robust controllers for polynomially uncertain systems , 2010, Autom..

[15]  A. Jadbabaie A Reduction in Conservatism in Stability and L_2 Gain Analysis of Takagi-Sugeno FuzzySystems via Linear Matrix Inequalities , 1999 .

[16]  Ricardo C. L. F. Oliveira,et al.  Special time-varying Lyapunov function for robust stability analysis of linear parameter varying systems with bounded parameter variation , 2009 .

[17]  Ricardo H. C. Takahashi,et al.  New Approach to Robust$ cal D$-Stability Analysis of Linear Time-Invariant Systems With Polytope-Bounded Uncertainty , 2006, IEEE Transactions on Automatic Control.

[18]  Fernando de Oliveira Souza,et al.  Reducing conservativeness in recent stability conditions of TS fuzzy systems , 2009, Autom..

[19]  Graziano Chesi,et al.  On the role of homogeneous forms in robustness analysis of control systems , 2003 .