Validating QBF Validity in HOL4

The Quantified Boolean Formulae (QBF) solver Squolem can generate certificates of validity, based on Skolem functions. We present independent checking of these certificates in the HOL4 theorem prover. This enables HOL4 users to benefit from Squolem’s automation for valid QBF problems. Detailed performance data shows that LCF-style checking of validity certificates is often (but not always) feasible even for large QBF instances. Additionally, our work provides high correctness assurances for Squolem’s claims of validity and uncovered a soundness bug in a previous version of its certificate validator QBV.

[1]  Sofiène Tahar,et al.  Theorem Proving in Higher Order Logics, 21st International Conference, TPHOLs 2008, Montreal, Canada, August 18-21, 2008. Proceedings , 2008, TPHOLs.

[2]  Guillaume Melquiond,et al.  Combining Coq and Gappa for Certifying Floating-Point Programs , 2009, Calculemus/MKM.

[3]  Luca Pulina,et al.  Evaluating and certifying QBFs: A comparison of state-of-the-art tools , 2009, AI Commun..

[4]  Joe Hurd An LCF-Style Interface between HOL and First-Order Logic , 2002, CADE.

[5]  Luca Pulina,et al.  Learning to Integrate Deduction and Search in Reasoning about Quantified Boolean Formulas , 2009, FroCoS.

[6]  Hans Kleine Büning,et al.  On Models for Quantified Boolean Formulas , 2004, Logic versus Approximation.

[7]  C. Ballarin Computer Algebra and Theorem Proving , 1999 .

[8]  Bruno Barras Programming and Computing in HOL , 2000, TPHOLs.

[9]  John Harrison Binary Decision Diagrams as a HOL Derived Rule , 1995, Comput. J..

[10]  Hans Kleine Büning,et al.  Resolution for Quantified Boolean Formulas , 1995, Inf. Comput..

[11]  Tjark Weber,et al.  Validating QBF Invalidity in HOL4 , 2011, ITP.

[12]  Hasan Amjad,et al.  Efficiently checking propositional refutations in HOL theorem provers , 2009, J. Appl. Log..

[13]  Sascha Böhme,et al.  Fast LCF-Style Proof Reconstruction for Z3 , 2010, ITP.

[14]  Marco Benedetti,et al.  QBF-Based Formal Verification: Experience and Perspectives , 2008, J. Satisf. Boolean Model. Comput..

[15]  M.J.C. Gordon,et al.  The HOL Logic and System , 1994 .

[16]  H. Amjad,et al.  Combining model checking and theorem proving , 2004 .

[17]  Robin Milner,et al.  Principal type-schemes for functional programs , 1982, POPL '82.

[18]  Armin Biere,et al.  Symbolic Model Checking without BDDs , 1999, TACAS.

[19]  Lawrence C. Paulson,et al.  MetiTarski: An Automatic Theorem Prover for Real-Valued Special Functions , 2010, Journal of Automated Reasoning.

[20]  Clark Barrett,et al.  Proof Translation and SMT-LIB Benchmark Certification : A Preliminary Report ∗ , 2008 .

[21]  Michael J. C. Gordon,et al.  From LCF to HOL: a short history , 2000, Proof, Language, and Interaction.

[22]  Lawrence C. Paulson,et al.  Translating Higher-Order Clauses to First-Order Clauses , 2007, Journal of Automated Reasoning.

[23]  Michael J. C. Gordon,et al.  Edinburgh LCF: A mechanised logic of computation , 1979 .

[24]  Yue Yang,et al.  QB or Not QB: An Efficient Execution Verification Tool for Memory Orderings , 2004, CAV.

[25]  Luca Pulina,et al.  Report of the Third QBF Solvers Evaluation , 2006, J. Satisf. Boolean Model. Comput..

[26]  Thomas Kropf,et al.  Integrating A First-order Automatic prover In The HOL Environment , 1991, 1991., International Workshop on the HOL Theorem Proving System and Its Applications.

[27]  J. Harrison Metatheory and Reflection in Theorem Proving: A Survey and Critique , 1995 .

[28]  Alonzo Church,et al.  A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.

[29]  Niklas Sörensson,et al.  An Extensible SAT-solver , 2003, SAT.

[30]  Reinhold Letz,et al.  Lemma and Model Caching in Decision Procedures for Quantified Boolean Formulas , 2002, TABLEAUX.

[31]  Nachum Dershowitz,et al.  Bounded Model Checking with QBF , 2005, SAT.

[32]  Daniel Kroening,et al.  A First Step Towards a Unified Proof Checker for QBF , 2007, SAT.