Graph-Based Visualization of Neuronal Connectivity Using Matrix Block Partitioning and Edge Bundling

Neuronal connectivity matrices contain information vital to the understanding of brain structure and function. In this work we present graph-based visualization techniques for macroscale connectivity matrices that retain anatomical context while reducing the clutter and occlusion problems that plague 2D and 3D node-link diagrams. By partitioning the connectivity matrix into blocks corresponding to brain hemispheres and bundling graph edges we are able to generate intuitive visualizations that permit investigation at multiple scales (hemisphere, lobe, anatomical region). We demonstrate our approach on connectivity matrices computed using tractography of high angular resolution diffusion images acquired as part of a Parkinson’s disease study.

[1]  Jean-Daniel Fekete,et al.  NodeTrix: a Hybrid Visualization of Social Networks , 2007, IEEE Transactions on Visualization and Computer Graphics.

[2]  Degang Zhang,et al.  Visual analytics of brain networks , 2012, NeuroImage.

[3]  P. Basser,et al.  In vivo fiber tractography using DT‐MRI data , 2000, Magnetic resonance in medicine.

[4]  Katsumi Aoki,et al.  Recent development of flow visualization , 2004, J. Vis..

[5]  Tim McGraw,et al.  High-Order Diffusion Tensor Connectivity Mapping on the GPU , 2014, ISVC.

[6]  Zeqian Sheny,et al.  Path visualization for adjacency matrices , 2007 .

[7]  Kristina D. Micheva,et al.  Array Tomography: A New Tool for Imaging the Molecular Architecture and Ultrastructure of Neural Circuits , 2007, Neuron.

[8]  Yuanzhen Li,et al.  Measuring visual clutter. , 2007, Journal of vision.

[9]  E. Tolosa,et al.  Functional brain networks and cognitive deficits in Parkinson's disease , 2014, Human brain mapping.

[10]  Stephen J. Smith,et al.  Array Tomography: A New Tool for Imaging the Molecular Architecture and Ultrastructure of Neural Circuits , 2007, Neuron.

[11]  Olaf Sporns,et al.  THE HUMAN CONNECTOME: A COMPLEX NETWORK , 2011, Schizophrenia Research.

[12]  Olaf Sporns,et al.  The Human Connectome: A Structural Description of the Human Brain , 2005, PLoS Comput. Biol..

[13]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[14]  Tim McGraw,et al.  Stochastic DT-MRI Connectivity Mapping on the GPU , 2007, IEEE Transactions on Visualization and Computer Graphics.

[15]  Daniel S. Margulies,et al.  Three-Dimensional Mean-Shift Edge Bundling for the Visualization of Functional Connectivity in the Brain , 2012, IEEE Transactions on Visualization and Computer Graphics.

[16]  Daniel S. Margulies,et al.  Visualizing the human connectome , 2013, NeuroImage.

[17]  Timothy E. J. Behrens,et al.  Human connectomics , 2012, Current Opinion in Neurobiology.

[18]  Markus Hadwiger,et al.  NeuroLines: A Subway Map Metaphor for Visualizing Nanoscale Neuronal Connectivity , 2014, IEEE Transactions on Visualization and Computer Graphics.

[19]  Kozo Sugiyama,et al.  Layout Adjustment and the Mental Map , 1995, J. Vis. Lang. Comput..

[20]  Patric Hagmann,et al.  Mapping the human connectome at multiple scales with diffusion spectrum MRI , 2012, Journal of Neuroscience Methods.

[21]  Jarke J. van Wijk,et al.  Force‐Directed Edge Bundling for Graph Visualization , 2009, Comput. Graph. Forum.

[22]  Jarke J. van Wijk,et al.  Compressed Adjacency Matrices: Untangling Gene Regulatory Networks , 2012, IEEE Transactions on Visualization and Computer Graphics.

[23]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[24]  Charl P. Botha,et al.  Visualization in Connectomics , 2012, Scientific Visualization.

[25]  M. Stella Atkins,et al.  Symmetric positive semi-definite Cartesian Tensor fiber orientation distributions (CT-FOD) , 2012, Medical Image Anal..

[26]  John D. Van Horn,et al.  Circular representation of human cortical networks for subject and population-level connectomic visualization , 2012, NeuroImage.