Analysis of the iterative penalty method for the Stokes equations

Abstract In this work we propose an iterative penalty method for addressing the Stokes equations. We can use a “not very small” penalty parameter to avoid the unstable computation by iteration. The Numerical experiments show that the algorithm is very effective.

[1]  G. Carey,et al.  Finite Elements: Fluid Mechanics Vol.,VI , 1986 .

[2]  Rolf Stenberg,et al.  Error analysis of some nite element methods for the Stokes problem , 1990 .

[3]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[4]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[5]  Claes Johnson,et al.  Analysis of some mixed finite element methods related to reduced integration , 1982 .

[6]  J. Tinsley Oden,et al.  PENALTY-FINITE ELEMENT METHODS FOR THE ANALYSIS OF STOKESIAN FLOWS* , 1982 .

[7]  Weimin Han,et al.  Analysis of some mixed elements for the Stokes problem , 1997 .

[8]  San-Yih Lin,et al.  A Modified Penalty Method for Stokes Equations and Its Applications to Navier-Stokes Equations , 1995, SIAM J. Sci. Comput..

[9]  Graham F. Carey,et al.  Penalty approximation of stokes flow , 1982 .

[10]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[11]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[12]  R. A. Nicolaides,et al.  On the stability of bilinear-constant velocity-pressure finite elements , 1984 .

[13]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .