Genome Scale Reconstruction of a Salmonella Metabolic Model

Salmonella are closely related to commensal Escherichia coli but have gained virulence factors enabling them to behave as enteric pathogens. Less well studied are the similarities and differences that exist between the metabolic properties of these organisms that may contribute toward niche adaptation of Salmonella pathogens. To address this, we have constructed a genome scale Salmonella metabolic model (iMA945). The model comprises 945 open reading frames or genes, 1964 reactions, and 1036 metabolites. There was significant overlap with genes present in E. coli MG1655 model iAF1260. In silico growth predictions were simulated using the model on different carbon, nitrogen, phosphorous, and sulfur sources. These were compared with substrate utilization data gathered from high throughput phenotyping microarrays revealing good agreement. Of the compounds tested, the majority were utilizable by both Salmonella and E. coli. Nevertheless a number of differences were identified both between Salmonella and E. coli and also within the Salmonella strains included. These differences provide valuable insight into differences between a commensal and a closely related pathogen and within different pathogenic strains opening new avenues for future explorations.

[1]  E. Vimr,et al.  Convergent Pathways for Utilization of the Amino Sugars N-Acetylglucosamine,N-Acetylmannosamine, and N-Acetylneuraminic Acid by Escherichia coli , 1999, Journal of bacteriology.

[2]  Vinay Satish Kumar,et al.  GrowMatch: An Automated Method for Reconciling In Silico/In Vivo Growth Predictions , 2009, PLoS Comput. Biol..

[3]  R. Cooper,et al.  2-Phenylethylamine catabolism by Escherichia coli K12. , 1987, Journal of general microbiology.

[4]  T. Lamark,et al.  Efflux of choline and glycine betaine from osmoregulating cells of Escherichia coli. , 1992, FEMS microbiology letters.

[5]  Vinay Satish Kumar,et al.  Optimization based automated curation of metabolic reconstructions , 2007, BMC Bioinformatics.

[6]  R. Bender,et al.  The nac (Nitrogen Assimilation Control) Gene from Escherichia coli , 1998, Journal of bacteriology.

[7]  G. Unden,et al.  C4-Dicarboxylate Degradation in Aerobic and Anaerobic Growth. , 2016, EcoSal Plus.

[8]  M. Mulvey,et al.  Complete Nucleotide Sequence of a 43-Kilobase Genomic Island Associated with the Multidrug Resistance Region of Salmonella enterica Serovar Typhimurium DT104 and Its Identification in Phage Type DT120 and Serovar Agona , 2001, Journal of bacteriology.

[9]  W Miller,et al.  Comparison of the Escherichia coli K-12 genome with sampled genomes of a Klebsiella pneumoniae and three salmonella enterica serovars, Typhimurium, Typhi and Paratyphi. , 2000, Nucleic acids research.

[10]  E. Threlfall,et al.  Increasing incidence of resistance to trimethoprim and ciprofloxacin in epidemic Salmonella typhimurium DT104 in England and Wales. , 1997, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[11]  B. Palsson,et al.  Systems approach to refining genome annotation , 2006, Proceedings of the National Academy of Sciences.

[12]  B. Bochner Global phenotypic characterization of bacteria , 2008, FEMS microbiology reviews.

[13]  L. Florea,et al.  Characterization of Salmonella enterica Subspecies I Genovars by Use of Microarrays , 2004, Journal of bacteriology.

[14]  E. Budinská,et al.  Identification of putative ancestors of the multidrug-resistant Salmonella enterica serovar typhimurium DT104 clone harboring the Salmonella genomic island 1 , 2007, Archives of Microbiology.

[15]  H. Mori,et al.  Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection , 2006, Molecular systems biology.

[16]  C. Yanofsky,et al.  Evidence for transcription antitermination control of tryptophanase operon expression in Escherichia coli K-12 , 1985, Journal of bacteriology.

[17]  M. Skinner,et al.  Catabolism of 3- and 4-hydroxyphenylacetate by the 3,4-dihydroxyphenylacetate pathway in Escherichia coli. , 1980, Journal of bacteriology.

[18]  S. Miller,et al.  Salmonella: a model for bacterial pathogenesis. , 2001, Annual review of medicine.

[19]  Markus J. Herrgård,et al.  Integrating high-throughput and computational data elucidates bacterial networks , 2004, Nature.

[20]  Kim Rutherford,et al.  Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18 , 2001, Nature.

[21]  H. P. Charles,et al.  Polymorphism in Escherichia coli: rtl atl and gat regions behave as chromosomal alternatives. , 1983, Journal of general microbiology.

[22]  A. Gilles,et al.  Regulation of Expression of the 2-Deoxy-d-Ribose Utilization Regulon, deoQKPX, from Salmonella enterica Serovar Typhimurium , 2003, Journal of bacteriology.

[23]  T. Leisinger,et al.  Characterization of α-Ketoglutarate-dependent Taurine Dioxygenase from Escherichia coli * , 1997, The Journal of Biological Chemistry.

[24]  G. Dougan,et al.  Identification of Core and Variable Components of the Salmonella enterica Subspecies I Genome by Microarray , 2005, Infection and Immunity.

[25]  B. Palsson,et al.  An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR) , 2003, Genome Biology.

[26]  P. Collin‐Osdoby,et al.  The apeE Gene of Salmonella typhimurium Encodes an Outer Membrane Esterase Not Present inEscherichia coli , 1998, Journal of bacteriology.

[27]  S. Silver,et al.  Citrate utilization by Escherichia coli: plasmid- and chromosome-encoded systems , 1983, Journal of bacteriology.

[28]  Andrew R. Joyce,et al.  Experimental and Computational Assessment of Conditionally Essential Genes in Escherichia coli , 2006, Journal of bacteriology.

[29]  W. Brill,et al.  Genetic control of histidine degradation in Salmonella typhimurium, strain LT-2. , 1969, The Journal of biological chemistry.

[30]  I. Beacham,et al.  Regulation of the ansB gene of Salmonella enterica , 1993, Molecular microbiology.

[31]  Adam M. Feist,et al.  A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information , 2007, Molecular systems biology.

[32]  Jason A. Papin,et al.  Genome-Scale Reconstruction and Analysis of the Pseudomonas putida KT2440 Metabolic Network Facilitates Applications in Biotechnology , 2008, PLoS Comput. Biol..

[33]  Bas Teusink,et al.  Modelling strategies for the industrial exploitation of lactic acid bacteria , 2006, Nature Reviews Microbiology.

[34]  G. Stephanopoulos,et al.  Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction , 2000, Biotechnology and bioengineering.

[35]  B Rowe,et al.  International increase in Salmonella enteritidis: A new pandemic? , 1990, Epidemiology and Infection.

[36]  T. Leisinger,et al.  The Escherichia coli ssuEADCB Gene Cluster Is Required for the Utilization of Sulfur from Aliphatic Sulfonates and Is Regulated by the Transcriptional Activator Cbl* , 1999, The Journal of Biological Chemistry.

[37]  J. Robert-Baudouy,et al.  Physiological and genetic regulation of the aldohexuronate transport system in Escherichia coli , 1976, Journal of bacteriology.

[38]  Bernhard O. Palsson,et al.  Constraint-based analysis of metabolic capacity of Salmonella typhimurium during host-pathogen interaction , 2009, BMC Systems Biology.

[39]  J. Lengyel,et al.  Evolution of a Second Gene for β-Galactosidase in Escherichia coli , 1973 .

[40]  G. Dougan,et al.  Genomic Comparison of Salmonella enterica Serovars and Salmonella bongori by Use of an S. enterica Serovar Typhimurium DNA Microarray , 2003, Journal of bacteriology.

[41]  H. Ochman,et al.  Lateral gene transfer and the nature of bacterial innovation , 2000, Nature.

[42]  R. Wilson,et al.  Comparison of Sample Sequences of the Salmonella typhiGenome to the Sequence of the Complete Escherichia coliK-12 Genome , 1998, Infection and Immunity.

[43]  B. Palsson,et al.  Towards multidimensional genome annotation , 2006, Nature Reviews Genetics.

[44]  T. Bobik,et al.  The Alternative Electron Acceptor Tetrathionate Supports B12-Dependent Anaerobic Growth ofSalmonella enterica Serovar Typhimurium on Ethanolamine or 1,2-Propanediol , 2001, Journal of bacteriology.

[45]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[46]  D. Wright EDITORIAL. LYMPHOMAS OF MUCOSA‐ASSOCIATED LYMPHOID TISSUE AND ANTIGEN DRIVE , 1996 .

[47]  P. Masters,et al.  Genetics of the glutamine transport system in Escherichia coli , 1981, Journal of bacteriology.

[48]  Alexander R. Horswill,et al.  The Tricarballylate Utilization (tcuRABC) Genes of Salmonella enterica Serovar Typhimurium LT2 , 2004, Journal of bacteriology.

[49]  M. Mulvey,et al.  The Salmonella genomic island 1 is an integrative mobilizable element , 2005, Molecular microbiology.

[50]  S. Falkow,et al.  Molecular Relationships Among the Salmonelleae , 1973, Journal of bacteriology.

[51]  B. Bochner,et al.  Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. , 2001, Genome research.

[52]  B. Magasanik,et al.  Genetic and metabolic control of enzymes responsible for histidine degradation in Salmonella typhimurium. 4-imidazolone-5-propionate amidohydrolase and N-formimino-L-glutamate formiminohydrolase. , 1971, The Journal of biological chemistry.

[53]  B. Wanner,et al.  Phenotype MicroArray Analysis of Escherichia coli K-12 Mutants with Deletions of All Two-Component Systems , 2003, Journal of bacteriology.

[54]  Ploeg,et al.  Identification of sulfate starvation-regulated genes in Escherichia coli: a gene cluster involved in the utilization of taurine as a sulfur source , 1996, Journal of bacteriology.

[55]  R. Wilson,et al.  Complete genome sequence of Salmonella enterica serovar Typhimurium LT2 , 2001, Nature.

[56]  W. Boos,et al.  Hexose/Pentose and Hexitol/Pentitol Metabolism , 2005, EcoSal Plus.

[57]  C. Park,et al.  The D-allose operon of Escherichia coli K-12 , 1997, Journal of bacteriology.

[58]  J. Roth,et al.  The control region of the pdu/cob regulon in Salmonella typhimurium , 1994, Journal of bacteriology.

[59]  P. Collin‐Osdoby,et al.  Mutations affecting a regulated, membrane-associated esterase in Salmonella typhimurium LT2 , 1994, Molecular and General Genetics MGG.

[60]  Vinay Satish Kumar,et al.  A Genome-Scale Metabolic Reconstruction of Mycoplasma genitalium, iPS189 , 2009, PLoS Comput. Biol..

[61]  Darren A. Natale,et al.  The COG database: an updated version includes eukaryotes , 2003, BMC Bioinformatics.

[62]  M. A. Prieto,et al.  Biodegradation of Aromatic Compounds byEscherichia coli , 2001, Microbiology and Molecular Biology Reviews.

[63]  R. Doolittle,et al.  Determining Divergence Times of the Major Kingdoms of Living Organisms with a Protein Clock , 1996, Science.

[64]  Yoshihiro Yamanishi,et al.  KEGG for linking genomes to life and the environment , 2007, Nucleic Acids Res..

[65]  T. Leisinger,et al.  Sulfonate-sulfur metabolism and its regulation in Escherichia coli , 2001, Archives of Microbiology.

[66]  B. Hove-Jensen,et al.  d-Allose Catabolism ofEscherichia coli: Involvement of alsI and Regulation of als Regulon Expression by Allose and Ribose , 1999, Journal of bacteriology.

[67]  H. Azakami,et al.  maoB, a gene that encodes a positive regulator of the monoamine oxidase gene (maoA) in Escherichia coli , 1996, Journal of bacteriology.

[68]  Adam M. Feist,et al.  The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli , 2008, Nature Biotechnology.

[69]  B. Rowe,et al.  Infection of laying hens with Salmonella enteritidis PT4 by conjunctival challenge , 1992, Veterinary Record.

[70]  C. Link,et al.  Genotypic exclusion: A novel relationship between the ribitol-arabitol and galactitol genes of E. coli , 2004, Molecular and General Genetics MGG.

[71]  R. Iwanicka-Nowicka,et al.  A new gene, cbl, encoding a member of the LysR family of transcriptional regulators belongs to Escherichia coli cys regulon. , 1995, Gene.