An Optimal Parallel Algorithm for Formula Evaluation

A new approach to Buss’s ${\textbf{NC}}^1 $ algorithm [Proc. 19th ACM Symposium on Theory of Computing, Association for Computing Machinery, New York, 1987, pp. 123–131] for evaluation of Boolean formulas is presented. This problem is shown to be complete for ${\textbf{NC}}^1 $ over ${\textbf{AC}}^0 $ reductions. This approach is then used to solve the more general problem of evaluating arithmetic formulas by using arithmetic circuits.

[1]  Mark Jerrum,et al.  Some Exact Complexity Results for Straight-Line Computations over Semirings , 1982, JACM.

[2]  Samuel R. Buss,et al.  The Boolean formula value problem is in ALOGTIME , 1987, STOC.

[3]  Gary L. Miller,et al.  Parallel tree contraction and its application , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[4]  Richard P. Brent,et al.  The Parallel Evaluation of General Arithmetic Expressions , 1974, JACM.

[5]  Nancy A. Lynch,et al.  Log Space Recognition and Translation of Parenthesis Languages , 1977, JACM.

[6]  Joachim von zur Gathen,et al.  Parallel Arithmetic Computations: A Survey , 1986, MFCS.

[7]  Patrick W. Dymond,et al.  Speedups of deterministic machines by synchronous parallel machines , 1983, J. Comput. Syst. Sci..

[8]  Uzi Vishkin,et al.  A complexity theory for unbounded fan-in parallelism , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[9]  Patrick W. Dymond Input-Driven Languages are in log n Depth , 1988, Inf. Process. Lett..

[10]  N. Immerman,et al.  On uniformity within NC 1 . , 1988 .

[11]  Uzi Vishkin,et al.  A complexity theory for unbounded fan-in parallelism , 1982, FOCS 1982.

[12]  Neil Immerman,et al.  Expressibility and Parallel Complexity , 1989, SIAM J. Comput..

[13]  Allan Borodin,et al.  On Relating Time and Space to Size and Depth , 1977, SIAM J. Comput..

[14]  Richard M. Karp,et al.  Parallel Algorithms for Shared-Memory Machines , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[15]  Richard Edwin Stearns,et al.  Memory bounds for recognition of context-free and context-sensitive languages , 1965, SWCT.

[16]  Stephen A. Cook,et al.  A Taxonomy of Problems with Fast Parallel Algorithms , 1985, Inf. Control..

[17]  Michael Sipser,et al.  Borel sets and circuit complexity , 1983, STOC.

[18]  D.E. Muller,et al.  Parallel Restructuring and Evaluation of Expressions , 1992, J. Comput. Syst. Sci..