The flare likelihood and region eruption forecasting (FLARECAST) project: flare forecasting in the big data & machine learning era

The European Union funded the FLARECAST project, that ran from January 2015 until February 2018. FLARECAST had a research-to-operations (R2O) focus, and accordingly introduced several innovations into the discipline of solar flare forecasting. FLARECAST innovations were: first, the treatment of hundreds of physical properties viewed as promising flare predictors on equal footing, extending multiple previous works; second, the use of fourteen (14) different machine learning techniques, also on equal footing, to optimize the immense Big Data parameter space created by these many predictors; third, the establishment of a robust, three-pronged communication effort oriented toward policy makers, space-weather stakeholders and the wider public. FLARECAST pledged to make all its data, codes and infrastructure openly available worldwide. The combined use of 170+ properties (a total of 209 predictors are now available) in multiple machine-learning algorithms, some of which were designed exclusively for the project, gave rise to changing sets of best-performing predictors for the forecasting of different flaring levels, at least for major flares. At the same time, FLARECAST reaffirmed the importance of rigorous training and testing practices to avoid overly optimistic pre-operational prediction performance. In addition, the project has (a) tested new and revisited physically intuitive flare predictors and (b) provided meaningful clues toward the transition from flares to eruptive flares, namely, events associated with coronal mass ejections (CMEs). These leads, along with the FLARECAST data, algorithms and infrastructure, could help facilitate integrated space-weather forecasting efforts that take steps to avoid effort duplication. In spite of being one of the most intensive and systematic flare forecasting efforts to-date, FLARECAST has not managed to convincingly lift the barrier of stochasticity in solar flare occurrence and forecasting: solar flare prediction thus remains inherently probabilistic.

[1]  David S. Richardson,et al.  Economic Value and Skill , 2012 .

[2]  A. T.V.S.,et al.  OF QUANTITATIVE , 2016 .

[3]  William Murtagh,et al.  Extreme Space Weather Impact: An Emergency Management Perspective , 2014 .

[4]  X. L. Yan,et al.  Successive X-class Flares and Coronal Mass Ejections Driven by Shearing Motion and Sunspot Rotation in Active Region NOAA 12673 , 2018, 1801.02290.

[5]  J. Leake,et al.  SIMULATIONS OF EMERGING MAGNETIC FLUX. I. THE FORMATION OF STABLE CORONAL FLUX ROPES , 2013, 1308.6204.

[6]  Anthony Widjaja,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2003, IEEE Transactions on Neural Networks.

[7]  Jeffrey L. Elman,et al.  Finding Structure in Time , 1990, Cogn. Sci..

[8]  Rafal A. Angryk,et al.  How to Train Your Flare Prediction Model: Revisiting Robust Sampling of Rare Events , 2021, The Astrophysical Journal Supplement Series.

[9]  D. Turcotte,et al.  Self-organized criticality , 1999 .

[10]  Trevor J. Hastie,et al.  Genome-wide association analysis by lasso penalized logistic regression , 2009, Bioinform..

[11]  D. S. Bloomfield,et al.  Active Region Photospheric Magnetic Properties Derived from Line-of-Sight and Radial Fields , 2017, 1712.06902.

[12]  Rongzhi Li,et al.  Application of support vector machine combined with K-nearest neighbors in solar flare and solar proton events forecasting , 2008 .

[13]  G. Barnes On the Relationship between Coronal Magnetic Null Points and Solar Eruptive Events , 2007 .

[14]  C. J. Wolfson,et al.  Design and Ground Calibration of the Helioseismic and Magnetic Imager (HMI) Instrument on the Solar Dynamics Observatory (SDO) , 2012 .

[15]  G. Lapenta,et al.  Understanding space weather to shield society: A global road map for 2015-2025 commissioned by COSPAR and ILWS , 2015, 1503.06135.

[16]  K. Tsinganos,et al.  The spectroscopic imprint of the pre-eruptive configuration resulting into two major coronal mass ejections , 2016, 1602.03680.

[17]  A. Benz,et al.  Flare Observations , 2016, Living Reviews in Solar Physics.

[18]  Takayuki Muranushi,et al.  UFCORIN: A fully automated predictor of solar flares in GOES X‐ray flux , 2015, 1507.08011.

[19]  Michaila Dimitropoulou,et al.  25 Years of Self-Organized Criticality: Solar and Astrophysics , 2014, 1403.6528.

[20]  K. Dalmasse,et al.  DISTRIBUTION OF ELECTRIC CURRENTS IN SOLAR ACTIVE REGIONS , 2014, 1401.2931.

[21]  P. D'emoulin,et al.  THE ORIGIN OF NET ELECTRIC CURRENTS IN SOLAR ACTIVE REGIONS , 2015, 1507.05060.

[22]  Robert A. Meyers Extreme Environmental Events , 2011 .

[23]  G. Barnes,et al.  Photospheric Magnetic Field Properties of Flaring versus Flare-quiet Active Regions. II. Discriminant Analysis , 2003 .

[24]  Maolin Tang A Hybrid , 2010 .

[25]  C. Schrijver,et al.  The Nonpotentiality of Active-Region Coronae and the Dynamics of the Photospheric Magnetic Field , 2005 .

[26]  C. Cid,et al.  On extreme geomagnetic storms , 2014 .

[27]  Manolis K. Georgoulis,et al.  Toward an Efficient Prediction of Solar Flares: Which Parameters, and How? , 2013, Entropy.

[28]  B. Efron,et al.  The Jackknife: The Bootstrap and Other Resampling Plans. , 1983 .

[29]  M. Angling,et al.  Using Extreme Value Theory for Determining the Probability of Carrington‐Like Solar Flares , 2016, 1604.03325.

[30]  J. Leake,et al.  SIMULATIONS OF EMERGING MAGNETIC FLUX. II. THE FORMATION OF UNSTABLE CORONAL FLUX ROPES AND THE INITIATION OF CORONAL MASS EJECTIONS , 2014, 1402.2645.

[31]  E. Biffis,et al.  Quantifying the Economic Value of Space Weather Forecasting for Power Grids: An Exploratory Study , 2018, Space Weather.

[32]  Lorenzo Rosasco,et al.  Are Loss Functions All the Same? , 2004, Neural Computation.

[33]  R. Rosner,et al.  Erratum: Cosmic Flare Transients: Constraints upon Models for Energy Storage and Release Derived from the Event Frequency Distribution , 1978 .

[34]  Rafal A. Angryk,et al.  Multivariate time series dataset for space weather data analytics , 2020, Scientific Data.

[35]  Edward W. Cliver,et al.  The 1859 space weather event revisited: limits of extreme activity , 2013 .

[36]  Yong-Jae Moon,et al.  Solar Flare Occurrence Rate and Probability in Terms of the Sunspot Classification Supplemented with Sunspot Area and Its Changes , 2012 .

[37]  Rushi Longadge,et al.  Class Imbalance Problem in Data Mining Review , 2013, ArXiv.

[38]  Cynthia Rudin,et al.  Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead , 2018, Nature Machine Intelligence.

[39]  I. Jolliffe,et al.  Forecast verification : a practitioner's guide in atmospheric science , 2011 .

[40]  W. Pesnell,et al.  The Solar Dynamics Observatory (SDO) , 2012 .

[41]  S. Gibson,et al.  The Partial Expulsion of a Magnetic Flux Rope , 2006 .

[42]  A. Sharma,et al.  Extreme events and natural hazards : the complexity perspective , 2012 .

[43]  Manolis K. Georgoulis,et al.  Predicting Flares and Solar Energetic Particle Events: The FORSPEF Tool , 2017 .

[44]  M. Al-Omari,et al.  Automated Prediction of CMEs Using Machine Learning of CME – Flare Associations , 2008 .

[45]  J. Leake,et al.  Relative magnetic helicity as a diagnostic of solar eruptivity , 2017, 1703.10562.

[46]  M. Lester,et al.  Assessment and recommendations for a consolidated European approach to space weather – as part of a global space weather effort , 2019, Journal of Space Weather and Space Climate.

[47]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[48]  K. D. Leka,et al.  Evaluating the Performance of Solar Flare Forecasting Methods , 2008 .

[49]  H. Kantz,et al.  Extreme Events in Nature and Society , 2006 .

[50]  M. Georgoulis,et al.  The source and engine of coronal mass ejections , 2019, Philosophical Transactions of the Royal Society A.

[51]  V. Uritsky,et al.  Spatio-Temporal Scaling of Turbulent Photospheric Line-of-Sight Magnetic Field in Active Region NOAA 11158 , 2014, 1402.5934.

[52]  Manolis K. Georgoulis Turbulence In The Solar Atmosphere: Manifestations And Diagnostics Via Solar Image Processing , 2005 .

[53]  Russell J. Hewett,et al.  Multifractal Properties of Evolving Active Regions , 2008 .

[54]  Rami Qahwaji,et al.  Automatic Short-Term Solar Flare Prediction Using Machine Learning and Sunspot Associations , 2007 .

[55]  N. Gopalswamy,et al.  Visibility of coronal mass ejections as a function of flare location and intensity , 2005 .

[56]  Haimin Wang,et al.  Flare-productive active regions , 2019, Living Reviews in Solar Physics.

[57]  D. S. Bloomfield,et al.  Photospheric Shear Flows in Solar Active Regions and Their Relation to Flare Occurrence , 2018, Solar Physics.

[58]  D. S. Bloomfield,et al.  Flaring Rates and the Evolution of Sunspot Group McIntosh Classifications , 2016, 1607.00903.

[59]  Shinichi Morishita,et al.  On Classification and Regression , 1998, Discovery Science.

[60]  David M. Raup,et al.  How Nature Works: The Science of Self-Organized Criticality , 1997 .

[61]  Paul Charbonneau,et al.  Predictive Capabilities of Avalanche Models for Solar Flares , 2014, 1406.6523.

[62]  N. Raouafi,et al.  Computer Vision for the Solar Dynamics Observatory (SDO) , 2012 .

[63]  Philip R. Goode,et al.  Signature of an Avalanche in Solar Flares as Measured by Photospheric Magnetic Fields , 2003 .

[64]  M. Temmer,et al.  An Observational Overview of Solar Flares , 2011, 1109.5932.

[65]  Manolis K. Georgoulis,et al.  Pre-Eruption Magnetic Configurations in the Active-Region Solar Photosphere , 2010, Proceedings of the International Astronomical Union.

[66]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[67]  Predicting Solar Flares Using a Novel Deep Convolutional Neural Network , 2020 .

[68]  H. Warren,et al.  The Magnetic Topology of Coronal Mass Ejection Sources , 2007, astro-ph/0703049.

[69]  Manolis K. Georgoulis,et al.  Non-neutralized Electric Currents in Solar Active Regions and Flare Productivity , 2017, 1708.07087.

[70]  A. F. Barghouty,et al.  PRIOR FLARING AS A COMPLEMENT TO FREE MAGNETIC ENERGY FOR FORECASTING SOLAR ERUPTIONS , 2012 .

[71]  M. L. Mays,et al.  A major solar eruptive event in July 2012: Defining extreme space weather scenarios , 2013 .

[72]  Haimin Wang,et al.  Statistical Assessment of Photospheric Magnetic Features in Imminent Solar Flare Predictions , 2009 .

[73]  Michaila Dimitropoulou,et al.  25 Years of Self-organized Criticality: Numerical Detection Methods , 2015, 1506.08142.

[74]  R. C. Carrington Description of a Singular Appearance seen in the Sun on September 1, 1859 , 1859 .

[75]  P. W. Schuck,et al.  WHAT IS THE RELATIONSHIP BETWEEN PHOTOSPHERIC FLOW FIELDS AND SOLAR FLARES? , 2009, 0905.0529.

[76]  Yi-Ming Wang,et al.  On the Solar Origins of Open Magnetic Fields in the Heliosphere , 2008 .

[77]  R. Hock The Role of Solar Flares in the Variability of the Extreme Ultraviolet Solar Spectral Irradiance , 2012 .

[78]  C. T. Gaunt,et al.  Quantifying the daily economic impact of extreme space weather due to failure in electricity transmission infrastructure , 2017 .

[79]  Graham Barnes,et al.  The NWRA Classification Infrastructure: Description and Extension to the Discriminant Analysis Flare Forecasting System (DAFFS) , 2018, 1802.06864.

[80]  D. Rust,et al.  Quantitative Forecasting of Major Solar Flares , 2007 .

[81]  Y. Liu Magnetic Field Overlying Solar Eruption Regions and Kink and Torus Instabilities , 2008 .

[82]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[83]  M. L. Mays,et al.  Ensemble Modeling of CMEs Using the WSA–ENLIL+Cone Model , 2015, 1504.04402.

[84]  D. S. Bloomfield,et al.  A COMPARISON OF FLARE FORECASTING METHODS. I. RESULTS FROM THE “ALL-CLEAR” WORKSHOP , 2016, 1608.06319.

[85]  M. Georgoulis Magnetic complexity in eruptive solar active regions and associated eruption parameters , 2007, 0712.0143.

[86]  Daren Yu,et al.  Short-Term Solar Flare Prediction Using a Sequential Supervised Learning Method , 2009 .

[87]  G. Barnes,et al.  Photospheric Magnetic Field Properties of Flaring versus Flare-quiet Active Regions. IV. A Statistically Significant Sample , 2007 .

[88]  J. Drake Characteristics of soft solar X-ray bursts , 1971 .

[89]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[90]  F. Woodcock,et al.  The Evaluation of Yes/No Forecasts for Scientific and Administrative Purposes , 1976 .

[91]  P. Riley,et al.  Extreme geomagnetic storms: Probabilistic forecasts and their uncertainties , 2017 .

[92]  Huan Liu,et al.  dEFEND: Explainable Fake News Detection , 2019, KDD.

[93]  James M. Keller,et al.  The possibilistic C-means algorithm: insights and recommendations , 1996, IEEE Trans. Fuzzy Syst..

[94]  Michele Piana,et al.  A Hybrid Supervised/Unsupervised Machine Learning Approach to Solar Flare Prediction , 2017, ArXiv.

[95]  D. Jackson,et al.  Flare forecasting at the Met Office Space Weather Operations Centre , 2017, 1703.06754.

[96]  ON THE ACCURACY OF THE DIFFERENTIAL EMISSION MEASURE DIAGNOSTICS OF SOLAR PLASMAS. APPLICATION TO SDO/AIA. II. MULTITHERMAL PLASMAS , 2012, 1210.2302.

[97]  T. Baranyi,et al.  PRE-FLARE DYNAMICS OF SUNSPOT GROUPS , 2014, 1405.7485.

[98]  Manolis K. Georgoulis,et al.  NON-NEUTRALIZED ELECTRIC CURRENT PATTERNS IN SOLAR ACTIVE REGIONS: ORIGIN OF THE SHEAR-GENERATING LORENTZ FORCE , 2012, 1210.2919.

[99]  Edmond C. Roelof,et al.  Impulsive Near-relativistic Solar Electron Events: Delayed Injection with Respect to Solar Electromagnetic Emission , 2002 .

[100]  Robert Erdélyi,et al.  ON THE STATE OF A SOLAR ACTIVE REGION BEFORE FLARES AND CMEs , 2016 .

[101]  C. J. Schrijver,et al.  Driving major solar flares and eruptions: A review , 2008, 0811.0787.

[102]  Tomaso A. Poggio,et al.  Regularization Networks and Support Vector Machines , 2000, Adv. Comput. Math..

[103]  K. D. Leka,et al.  PHOTOSPHERIC MAGNETIC FIELD PROPERTIES OF FLARING VERSUS FLARE-QUIET ACTIVE REGIONS. III. MAGNETIC CHARGE TOPOLOGY MODELS , 2006 .

[104]  Edward A. West,et al.  A quantitative study relating observed shear in photospheric magnetic fields to repeated flaring , 1984 .

[105]  T. Sakurai,et al.  Measurement of Magnetic Helicity Injection and Free Energy Loading into the Solar Corona , 2002 .

[106]  M. Berger,et al.  The topological properties of magnetic helicity , 1984, Journal of Fluid Mechanics.

[107]  D. S. Bloomfield,et al.  TOWARD RELIABLE BENCHMARKING OF SOLAR FLARE FORECASTING METHODS , 2012, 1202.5995.

[108]  E. Priest,et al.  ON THE NATURE OF RECONNECTION AT A SOLAR CORONAL NULL POINT ABOVE A SEPARATRIX DOME , 2013, 1307.6874.

[109]  D. S. Bloomfield,et al.  Which Photospheric Characteristics Are Most Relevant to Active-Region Coronal Mass Ejections? , 2019, Solar Physics.

[110]  Chang Liu,et al.  Multiwavelength Study of Flow Fields in Flaring Super Active Region NOAA 10486 , 2006 .

[111]  Andy Liaw,et al.  Classification and Regression by randomForest , 2007 .

[112]  Carolus J. Schrijver,et al.  A Characteristic Magnetic Field Pattern Associated with All Major Solar Flares and Its Use in Flare Forecasting , 2007 .

[113]  A. Veronig,et al.  The Origin, Early Evolution and Predictability of Solar Eruptions , 2018, The Scientific Foundation of Space Weather.

[114]  K. Kusano,et al.  MAGNETIC FIELD STRUCTURES TRIGGERING SOLAR FLARES AND CORONAL MASS EJECTIONS , 2012, 1210.0598.

[115]  E. Lu,et al.  Avalanches and the Distribution of Solar Flares , 1991 .

[116]  Thuy Mai,et al.  Solar Dynamics Observatory (SDO) , 2015 .

[117]  Earl K. Long Assessment and Recommendations , 2004 .

[118]  Statistics,et al.  Differential Emission Measure Evolution as a Precursor of Solar Flares , 2020, 2011.06433.

[119]  N. Vilmer,et al.  Testing predictors of eruptivity using parametric flux emergence simulations , 2017, 1706.04915.

[120]  Sung-Hong Park,et al.  Testing and Improving a Set of Morphological Predictors of Flaring Activity , 2018, Solar Physics.

[121]  H. Zirin,et al.  Delta spots and great flares , 1982 .

[122]  Hisashi Q. Higuchi On the nature of , 1999 .

[123]  Michele Piana,et al.  Flare forecasting and feature ranking using SDO/HMI data , 2018 .

[124]  R. Erdélyi,et al.  ON FLARE PREDICTABILITY BASED ON SUNSPOT GROUP EVOLUTION , 2015, 1503.04634.

[125]  L. K. Jian,et al.  Benchmarking CME Arrival Time and Impact: Progress on Metadata, Metrics, and Events , 2018, Space Weather.

[126]  Sophie A. Murray,et al.  Verification of Space Weather Forecasts Issued by the Met Office Space Weather Operations Centre , 2017, 1804.02985.

[127]  Chang Liu,et al.  SUDDEN PHOTOSPHERIC MOTION AND SUNSPOT ROTATION ASSOCIATED WITH THE X2.2 FLARE ON 2011 FEBRUARY 15 , 2014, 1401.7957.

[128]  T. P. O'Brien,et al.  Transitioning Research to Operations: Transforming the “Valley of Death” Into a “Valley of Opportunity” , 2013 .

[129]  K. D. Leka,et al.  Photospheric Magnetic Field Properties of Flaring versus Flare-quiet Active Regions. I. Data, General Approach, and Sample Results , 2003 .

[130]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[131]  P. Bak,et al.  Self-organized criticality. , 1988, Physical review. A, General physics.

[132]  L. Boucheron,et al.  An automated classification approach to ranking photospheric proxies of magnetic energy build-up , 2015, 1506.08717.

[133]  Michele Piana,et al.  Feature Ranking of Active Region Source Properties in Solar Flare Forecasting and the Uncompromised Stochasticity of Flare Occurrence , 2019, The Astrophysical Journal.

[134]  Lorenzo Rosasco,et al.  Some Properties of Regularized Kernel Methods , 2004, J. Mach. Learn. Res..

[135]  Why is a flare-rich active region CME-poor? , 2016, 1607.07531.

[136]  Validation and Benchmarking of a Practical Free Magnetic Energy and Relative Magnetic Helicity Budget Calculation in Solar Magnetic Structures , 2014, 1406.5381.

[137]  J. Leake,et al.  Time Variations of the Nonpotential and Volume-threading Magnetic Helicities , 2018, The Astrophysical Journal.

[138]  G. A. Gary,et al.  Correlation of the Coronal Mass Ejection Productivity of Solar Active Regions with Measures of Their Global Nonpotentiality from Vector Magnetograms: Baseline Results , 2002 .

[139]  Valentyna Abramenko,et al.  Multifractal Analysis Of Solar Magnetograms , 2005 .

[140]  Harold Zirin,et al.  BEARALERTS: A successful flare prediction system , 1991 .

[141]  Scott C. Freese,et al.  Radiation impacts on human health during spaceflight beyond Low Earth Orbit , 2016 .

[142]  Graham Barnes,et al.  A Comparison of Classifiers for Solar Energetic Events , 2016, Astroinformatics.

[143]  G. A. Gary,et al.  Eruption of a Multiple-Turn Helical Magnetic Flux Tube in a Large Flare: Evidence for External and Internal Reconnection That Fits the Breakout Model of Solar Magnetic Eruptions , 2004 .

[144]  Manolis K. Georgoulis,et al.  A Comparison of Flare Forecasting Methods. III. Systematic Behaviors of Operational Solar Flare Forecasting Systems , 2019, The Astrophysical Journal.

[145]  James M. McTiernan,et al.  Solar flares and avalanches in driven dissipative systems , 1993 .

[146]  Loukas Vlahos,et al.  The statistical flare. , 1995 .

[147]  Brian R. Dennis,et al.  Frequency distributions and correlations of solar X-ray flare parameters , 1993 .

[148]  M. Den,et al.  Solar Flare Prediction Model with Three Machine-learning Algorithms using Ultraviolet Brightening and Vector Magnetograms , 2016, 1611.01791.

[149]  Sung-Hong Park,et al.  Connecting Coronal Mass Ejections to Their Solar Active Region Sources: Combining Results from the HELCATS and FLARECAST Projects , 2017, 1803.06529.

[150]  F. Auchère,et al.  ON THE ACCURACY OF THE DIFFERENTIAL EMISSION MEASURE DIAGNOSTICS OF SOLAR PLASMAS. APPLICATION TO SDO/AIA. II. MULTITHERMAL PLASMAS , 2012, 1210.2304.

[151]  A. B. Galvin,et al.  CONNECTING SPEEDS, DIRECTIONS AND ARRIVAL TIMES OF 22 CORONAL MASS EJECTIONS FROM THE SUN TO 1 AU , 2014, 1404.3579.

[152]  Manolis K. Georgoulis,et al.  On Our Ability to Predict Major Solar Flares , 2012 .

[153]  Enrico Camporeale,et al.  The Challenge of Machine Learning in Space Weather: Nowcasting and Forecasting , 2019, Space Weather.

[154]  P. McIntosh The classification of sunspot groups , 1990 .

[155]  Manolis K. Georgoulis,et al.  Forecasting Solar Flares Using Magnetogram-based Predictors and Machine Learning , 2018, 1801.05744.

[156]  S. Biswas Solar Energetic Particles , 2000 .

[157]  THE OCCURRENCE AND SPEED OF CMEs RELATED TO TWO CHARACTERISTIC EVOLUTION PATTERNS OF HELICITY INJECTION IN THEIR SOLAR SOURCE REGIONS , 2012, 1203.1690.

[158]  Haimin Wang,et al.  PRODUCTIVITY OF SOLAR FLARES AND MAGNETIC HELICITY INJECTION IN ACTIVE REGIONS , 2010, 1005.3416.

[159]  Russell J. Hewett,et al.  Multiscale Analysis of Active Region Evolution , 2008 .

[160]  Clare E. Parnell,et al.  J un 2 00 7 A trilinear method for finding null points in a 3 D vector space , 2008 .

[161]  Wu,et al.  Scaling and universality in avalanches. , 1989, Physical review. A, General physics.

[162]  W. Thompson Coordinate systems for solar image data , 2006 .

[163]  Petrus C. H. Martens,et al.  Formation and eruption of solar prominences , 1989 .

[164]  Jesper Schou,et al.  The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: Overview and Performance , 2014, 1404.1881.

[165]  X. Cheng,et al.  Decoding the Pre-Eruptive Magnetic Field Configurations of Coronal Mass Ejections , 2020, Space Science Reviews.

[166]  Stanley S. Ipson,et al.  A new technique for the calculation and 3D visualisation of magnetic complexities on solar satellite images , 2010, The Visual Computer.

[167]  Rami Qahwaji,et al.  Solar Flare Prediction Using Advanced Feature Extraction, Machine Learning, and Feature Selection , 2011, Solar Physics.

[168]  J. T. Hoeksema,et al.  The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: SHARPs – Space-Weather HMI Active Region Patches , 2014, 1404.1879.

[169]  S. Wing,et al.  Space Weather in the Machine Learning Era: A Multidisciplinary Approach , 2018 .

[170]  Komei Sugiura,et al.  Deep Flare Net (DeFN) Model for Solar Flare Prediction , 2018, 1805.03421.

[171]  J. P. Mason,et al.  TESTING AUTOMATED SOLAR FLARE FORECASTING WITH 13 YEARS OF MICHELSON DOPPLER IMAGER MAGNETOGRAMS , 2010 .

[172]  Francesco Masulli,et al.  Possibilistic clustering approach to trackless ring Pattern Recognition in RICH counters , 2006, Int. J. Approx. Reason..

[173]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[174]  Manolis K. Georgoulis,et al.  A Comparison of Flare Forecasting Methods. II. Benchmarks, Metrics, and Performance Results for Operational Solar Flare Forecasting Systems , 2019, The Astrophysical Journal Supplement Series.

[175]  D. Seaton,et al.  OBSERVATIONAL EVIDENCE OF TORUS INSTABILITY AS TRIGGER MECHANISM FOR CORONAL MASS EJECTIONS: THE 2011 AUGUST 4 FILAMENT ERUPTION , 2014, 1401.5936.

[176]  Tang,et al.  Self-Organized Criticality: An Explanation of 1/f Noise , 2011 .

[177]  E. Pariat,et al.  Threshold of Non-potential Magnetic Helicity Ratios at the Onset of Solar Eruptions , 2018, The Astrophysical Journal.

[178]  Monica G. Bobra,et al.  SOLAR FLARE PREDICTION USING SDO/HMI VECTOR MAGNETIC FIELD DATA WITH A MACHINE-LEARNING ALGORITHM , 2014, 1411.1405.

[179]  J. T. Hoeksema,et al.  The Helioseismic and Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO) , 2012 .

[180]  M. Hagyard,et al.  Vector magnetic field evolution, energy storage, and associated photospheric velocity shear within a flare-productive active region , 1982 .

[181]  Michael I. Jordan Serial Order: A Parallel Distributed Processing Approach , 1997 .

[182]  R. Howard,et al.  Solar Magnetic Fields and the Great Flare of July 16, 1959. , 1963 .