Formation and evolution of chain-propagating species upon ethylene polymerization with neutral salicylaldiminato nickel(II) catalysts.

Formation of Ni-polymeryl propagating species upon the interaction of three salicylaldiminato nickel(II) complexes of the type [(N,O)Ni(CH3 )(Py)] (where (N,O)=salicylaldimine ligands, Py=pyridine) with ethylene (C2 H4 /Ni=10:30) has been studied by (1) H and (13) C NMR spectroscopy. Typically, the ethylene/catalyst mixtures in [D8 ]toluene were stored for short periods of time at +60 °C to generate the [(N,O)Ni(polymeryl)] species, then quickly cooled, and the NMR measurements were conducted at -20 °C. At that temperature, the [(N,O)Ni(polymeryl)] species are stable for days; diffusion (1) H NMR measurements provide an estimate of the average length of polymeryl chain (polymeryl=(C2 H4 )n H, n=6-18). At high ethylene consumptions, the [(N,O)Ni(polymeryl)] intermediates decline, releasing free polymer chains and yielding [(N,O)Ni(Et)(Py)] species, which also further decompose to form the ultimate catalyst degradation product, a paramagnetic [(N,O)2 Ni(Py)] complex. In [(N,O)2 Ni(Py)], the pyridine ligand is labile (with activation energy for its dissociation of (12.3±0.5) kcal mol(-1) , ΔH(≠) 298 =(11.7±0.5) kcal mol(-1) , ΔS(≠) 298 =(-7±1) cal K(-1)  mol(-1) ). Upon the addition of nonpolar solvent (pentane), the pyridine ligand is lost completely to yield the crystals of diamagnetic [(N,O)2 Ni] complex. NMR spectroscopic analysis of the polyethylenes formed suggests that the evolution of chain-propagating species ends up with formation of polyethylene with predominately internal and terminal vinylene groups rather than vinyl groups.

[1]  L. Cavallo,et al.  Activation and Deactivation of Neutral Palladium(II) Phosphinesulfonato Polymerization Catalysts , 2012 .

[2]  T. Marks,et al.  Ligand steric and fluoroalkyl substituent effects on enchainment cooperativity and stability in bimetallic nickel(II) polymerization catalysts. , 2012, Chemistry.

[3]  T. Marks,et al.  Suppression of β-Hydride Chain Transfer in Nickel(II)-Catalyzed Ethylene Polymerization via Weak Fluorocarbon Ligand–Product Interactions , 2012 .

[4]  A. Macchioni,et al.  Structure and Dynamics in Solution of Bis(phenoxy-amine)Zirconium Catalysts for Olefin Polymerization , 2011 .

[5]  Yue-sheng Li,et al.  Observations and Mechanistic Insights on Unusual Stability of Neutral Nickel Complexes with a Sterically Crowded Metal Center , 2011 .

[6]  Hans‐Jörg Himmel,et al.  Combining NMR of dynamic and paramagnetic molecules: fluxional high-spin nickel(II) complexes bearing bisguanidine ligands. , 2011, Inorganic chemistry.

[7]  Yue-sheng Li,et al.  Highly Active Neutral Nickel(II) Catalysts for Ethylene Polymerization Bearing Modified β-Ketoiminato Ligands , 2009 .

[8]  Z. Guan,et al.  Nickel(II) and Palladium(II) Polymerization Catalysts Bearing a Fluorinated Cyclophane Ligand: Stabilization of the Reactive Intermediate(1) , 2009 .

[9]  H. Möller,et al.  Unusual Reactivity of N,N,N′,N′-Tetramethylethylenediamine-Coordinated Neutral Nickel(II) Polymerization Catalysts , 2009 .

[10]  H. Möller,et al.  Mechanistic insights on the copolymerization of polar vinyl monomers with neutral Ni(II) catalysts. , 2009, Journal of the American Chemical Society.

[11]  S. Mecking,et al.  Deactivation pathways of neutral Ni(II) polymerization catalysts. , 2009, Journal of the American Chemical Society.

[12]  Joseph A. Wright,et al.  Ligand Mobility and Solution Structures of the Metallocenium Ion Pairs [Me2C(Cp)(fluorenyl)MCH2SiMe3+···X−] (M = Zr, Hf; X = MeB(C6F5)3, B(C6F5)4) , 2008 .

[13]  A. Macchioni,et al.  Self-aggregation tendency of zirconocenium ion pairs which model polymer-chain-carrying species in aromatic and aliphatic solvents with low polarity. , 2008, Chemistry.

[14]  J. Carpentier,et al.  Synthesis, Structures, Dynamics, and Ethylene Polymerization Activity of Nickel Complexes Containing an ortho-Methoxy-aryl Diphosphine Ligand , 2008 .

[15]  S. Mecking,et al.  Polymer Microstructure Control in Catalytic Polymerization Exclusively by Electronic Effects of Remote Substituents , 2007 .

[16]  C. Alonso-Moreno,et al.  Evidence for mixed-ion clusters in metallocene catalysts: influence on ligand exchange dynamics and catalyst activity. , 2007, Journal of the American Chemical Society.

[17]  A. Chiche,et al.  Single lamella nanoparticles of polyethylene. , 2007, Nano letters.

[18]  S. Mecking,et al.  Substituent Effects in (κ2-N,O)-Salicylaldiminato Nickel(II)−Methyl Pyridine Polymerization Catalysts: Terphenyls Controlling Polyethylene Microstructures , 2007 .

[19]  S. Mecking,et al.  Synthesis of Aqueous Polyethylene Dispersions with Electron-Deficient Neutral Nickel(II) Catalysts with Enolatoimine Ligands , 2007 .

[20]  R. Thomann,et al.  Copolymerization of Ethylene with 1-Butene and Norbornene to Higher Molecular Weight Copolymers in Aqueous Emulsion , 2006 .

[21]  S. Mecking,et al.  Aqueous dispersions of polypropylene and poly(1-butene) with variable microstructures formed with neutral Nickel(II) complexes , 2006 .

[22]  M. Neuburger,et al.  Ethylene oligomerisation and polymerisation with nickel phosphanylenolates bearing electron-withdrawing substituents: Structure-reactivity relationships. , 2006, Chemistry.

[23]  S. Mecking,et al.  Water-soluble salicylaldiminato Ni(II)-methyl complexes: enhanced dissociative activation for ethylene polymerization with unprecedented nanoparticle formation. , 2006, Journal of the American Chemical Society.

[24]  P. White,et al.  Synthesis, Characterization, and Ethylene Polymerization Activities of Neutral Nickel(II) Complexes Derived from Anilino-Substituted Enone Ligands Bearing Trifluoromethyl and Trifluoroacetyl Substituents , 2006 .

[25]  R. Appel,et al.  Neuartige Nickel‐ und Palladium‐Komplexe mit Aminobis(imino)phosphoran‐Liganden zur Polymerisation von Ethylen , 2006 .

[26]  V. Monteil,et al.  Aqueous dispersions of extraordinarily small polyethylene nanoparticles. , 2005, Angewandte Chemie.

[27]  R. Grubbs,et al.  Insights into the Deactivation of Neutral Nickel Ethylene Polymerization Catalysts in the Presence of Functionalized Olefins , 2004 .

[28]  M. Brookhart,et al.  A mechanistic investigation of the polymerization of ethylene catalyzed by neutral Ni(II) complexes derived from bulky anilinotropone ligands. , 2004, Journal of the American Chemical Society.

[29]  S. Mecking,et al.  Remote substituents controlling catalytic polymerization by very active and robust neutral nickel(II) complexes. , 2004, Angewandte Chemie.

[30]  T. Marks,et al.  NOE and PGSE NMR spectroscopic studies of solution structure and aggregation in metallocenium ion-pairs. , 2004, Journal of the American Chemical Society.

[31]  R. Grubbs,et al.  Synthesis of neutral nickel catalysts for ethylene polymerization--the influence of ligand size on catalyst stability. , 2003, Chemical communications.

[32]  S. Mecking,et al.  Catalytic Polymerization of Ethylene in Aqueous Emulsion with a Simple in Situ Catalyst , 2003 .

[33]  R. Thomann,et al.  Submicron polyethylene particles from catalytic emulsion polymerization. , 2003, Journal of the American Chemical Society.

[34]  M. Brookhart,et al.  Mechanistic studies of nickel(II) alkyl agostic cations and alkyl ethylene complexes: investigations of chain propagation and isomerization in (alpha-diimine)Ni(II)-catalyzed ethylene polymerization. , 2003, Journal of the American Chemical Society.

[35]  H. Brintzinger,et al.  Activation of dimethyl zirconocene by methylaluminoxane (MAO)-size estimate for Me-MAO(-) anions by pulsed field-gradient NMR. , 2002, Journal of the American Chemical Society.

[36]  J. Claverie,et al.  Catalytic Copolymerization of Ethylene and Polar and Nonpolar α-Olefins in Emulsion , 2002 .

[37]  S. Mecking,et al.  High molecular mass polyethylene aqueous latexes by catalytic polymerization. , 2001, Angewandte Chemie.

[38]  S. Mecking,et al.  Wässrige Latices aus hochmolekularem Polyethylen durch katalytische Polymerisation , 2001 .

[39]  C. Bougault,et al.  Paramagnetic NMR investigations of high-spin nickel(II) complexes. Controlled synthesis, structural, electronic, and magnetic properties of dinuclear vs. mononuclear species. , 2001, Journal of the American Chemical Society.

[40]  M. Brookhart,et al.  A Highly Active Anilinotropone-Based Neutral Nickel(II) Catalyst for Ethylene Polymerization , 2001 .

[41]  M. Brookhart,et al.  Ni(II)-Catalyzed Polymerization of trans-2-Butene , 2001 .

[42]  J. Claverie,et al.  Very Active Neutral P,O-Chelated Nickel Catalysts for Ethylene Polymerization , 2001 .

[43]  C. Novat,et al.  Catalytic Polymerization of Ethylene in Emulsion , 2001 .

[44]  S. Mecking,et al.  Aqueous Homo- and Copolymerization of Ethylene by Neutral Nickel (II) Complexes , 2001 .

[45]  U. Dzhemilev,et al.  A new route of the reaction of EtAlCl2 with α-olefins catalyzed by Ti complexes , 2001 .

[46]  Andrew J. P. White,et al.  The effect of bulky substituents on the olefin polymerisation behaviour of nickel catalysts bearing [P,O] chelate ligands , 2001 .

[47]  E. Oñate,et al.  Synthesis of branched polyethylene using (α-diimine)nickel(II) catalysts : influence of temperature, ethylene pressure, and ligand structure on polymer properties , 2000 .

[48]  J. Broyer,et al.  Emulsion polymerization of ethylene in water medium catalysed by organotransition metal complexes , 2000 .

[49]  Friedrich,et al.  Neutral, single-component nickel (II) polyolefin catalysts that tolerate heteroatoms , 2000, Science.

[50]  S. Mecking,et al.  Coordination polymerization of ethylene in water by Pd (II) and Ni (II) catalysts , 2000 .

[51]  R. F. Souza,et al.  13C NMR Determination of the Composition of Linear Low-Density Polyethylene Obtained with [η3-Methallyl-nickel-diimine]PF6 Complex , 1999 .

[52]  H. Brintzinger,et al.  Diffusion coefficients of zirconocene–borate ion pairs studied by pulsed field-gradient NMR—evidence for ion quadruples in benzene solutions , 1999 .

[53]  R. Grubbs,et al.  Neutral Nickel(II)-Based Catalysts for Ethylene Polymerization , 1998 .

[54]  D. J. Tempel,et al.  Living Polymerization of α-Olefins Using NiII−α-Diimine Catalysts. Synthesis of New Block Polymers Based on α-Olefins , 1996 .

[55]  Charles S. Johnson,et al.  An Improved Diffusion-Ordered Spectroscopy Experiment Incorporating Bipolar-Gradient Pulses , 1995 .

[56]  Maurice Brookhart,et al.  New Pd(II)- and Ni(II)-Based Catalysts for Polymerization of Ethylene and .alpha.-Olefins , 1995 .

[57]  A. Yanagisawa,et al.  Allylbarium Reagents: Unprecedented Regio- and Stereoselective Allylation Reactions of Carbonyl Compounds , 1994 .

[58]  Charles S. Johnson,et al.  A PFG NMR experiment for accurate diffusion and flow studies in the presence of eddy currents , 1991 .

[59]  J. C. Randall A REVIEW OF HIGH RESOLUTION LIQUID 13CARBON NUCLEAR MAGNETIC RESONANCE CHARACTERIZATIONS OF ETHYLENE-BASED POLYMERS , 1989 .

[60]  A. Rudin,et al.  Branching in low density polyethylene by 13C−NMR , 1987 .

[61]  G. Fink,et al.  Novel Polymerization of α‐Olefins with the Catalyst System Nickel/Aminobis(imino)phosphorane , 1985 .

[62]  G. Fink,et al.  Neuartige Polymerisation von α-Olefinen mit dem Katalysatorsystem Nickel/Aminobis(imino)phosphoran , 1985 .

[63]  J. Witte,et al.  Hochaktive Ylid‐Nickel‐Katalysatoren für die Ethen‐Polymerisation , 1985 .

[64]  K. Starzewski,et al.  Highly Active Ylide-Nickel Catalysts for the Polymerization of Ethylene† , 1985 .

[65]  W. Keim,et al.  Novel Nickel‐ and Palladium‐Complexes with Aminobis(imino)phosphorane Ligands for the Polymerization of Ethylene , 1981 .

[66]  W. Keim,et al.  Novel Coordination of (Benzoylmethylene)triphenylphosphorane in a Nickel Oligomerization Catalyst , 1978 .

[67]  C. Krüger,et al.  Neuartige Koordinierungsweise von (Benzoylmethylen)‐triphenylphosphoran in einem Nickel‐Oligomerisierungskatalysator , 1978 .

[68]  T. J. Swift 2 – The Paramagnetic Linewidth , 1973 .

[69]  R. H. Holm 7 – Stereochemistry and Structural and Electronic Equilibria , 1973 .

[70]  K. Schwarzhans NMR‐Spektroskopie an paramagnetischen Komplexverbindungen , 1970 .

[71]  K. Schwarzhans NMR Spectroscopy of Paramagnetic Complexes , 1970 .