Multidimensional Scaling

The concept of similarity, or a sense of 'sameness' among things, is pivotal to theories in the cognitive sciences and beyond. Similarity, however, is a difficult thing to measure. Multidimensional scaling (MDS) is a tool by which researchers can obtain quantitative estimates of similarity among groups of items. More formally, MDS refers to a set of statistical techniques that are used to reduce the complexity of a data set, permitting visual appreciation of the underlying relational structures contained therein. The current paper provides an overview of MDS. We discuss key aspects of performing this technique, such as methods that can be used to collect similarity estimates, analytic techniques for treating proximity data, and various concerns regarding interpretation of the MDS output. MDS analyses of two novel data sets are also included, highlighting in step-by-step fashion how MDS is performed, and key issues that may arise during analysis. WIREs Cogn Sci 2013, 4:93-103. doi: 10.1002/wcs.1203 This article is categorized under: Psychology > Perception and Psychophysics.

[1]  F ATTNEAVE,et al.  Dimensions of similarity. , 1950, The American journal of psychology.

[2]  W. Torgerson Multidimensional scaling: I. Theory and method , 1952 .

[3]  R. Shepard Stimulus and response generalization: A stochastic model relating generalization to distance in psychological space , 1957 .

[4]  Joseph L. Zinnes,et al.  Theory and Methods of Scaling. , 1958 .

[5]  R. Shepard The analysis of proximities: Multidimensional scaling with an unknown distance function. II , 1962 .

[6]  R. Shepard The analysis of proximities: Multidimensional scaling with an unknown distance function. I. , 1962 .

[7]  J. Kruskal Nonmetric multidimensional scaling: A numerical method , 1964 .

[8]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[9]  W. Torgerson,et al.  Multidimensional scaling of similarity , 1965, Psychometrika.

[10]  N. Henley A psychological study of the semantics of animal terms , 1969 .

[11]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[12]  George Rabinowitz,et al.  An Introduction to Nonmetric Multidimensional Scaling , 1975 .

[13]  J. Carroll,et al.  Spatial, non-spatial and hybrid models for scaling , 1976 .

[14]  Forrest W. Young,et al.  Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features , 1977 .

[15]  A. Tversky,et al.  Additive similarity trees , 1977 .

[16]  A. Tversky Features of Similarity , 1977 .

[17]  Forrest W. Young,et al.  ALSCAL: A nonmetric multidimensional scaling program with several individual-differences options , 1978 .

[18]  J. Cunningham,et al.  Free trees and bidirectional trees as representations of psychological distance , 1978 .

[19]  W. R. Garner,et al.  Reaction time as a measure of inter- and intraobject visual similarity: Letters of the alphabet , 1979 .

[20]  Roger N. Shepard,et al.  Additive clustering: Representation of similarities as combinations of discrete overlapping properties. , 1979 .

[21]  G C Gilmore,et al.  Multidimensional letter similarity derived from recognition errors , 1979, Perception & psychophysics.

[22]  R N Shepard,et al.  Multidimensional Scaling, Tree-Fitting, and Clustering , 1980, Science.

[23]  J. Leeuw,et al.  Multidimensional Scaling , 2003, Encyclopedic Dictionary of Archaeology.

[24]  S. Shevell,et al.  Developmental changes in face processing: results from multidimensional scaling. , 1985, Journal of experimental child psychology.

[25]  J. Russell,et al.  Multidimensional scaling of emotional facial expressions: Similarity from preschoolers to adults. , 1985 .

[26]  Douglas L. Hintzman,et al.  "Schema Abstraction" in a Multiple-Trace Memory Model , 1986 .

[27]  J. W. Hutchinson,et al.  Nearest neighbor analysis of psychological spaces. , 1986 .

[28]  R. Nosofsky Attention, similarity, and the identification-categorization relationship. , 1986, Journal of experimental psychology. General.

[29]  László Orlóci,et al.  Applying Metric and Nonmetric Multidimensional Scaling to Ecological Studies: Some New Results , 1986 .

[30]  R. Shepard,et al.  Toward a universal law of generalization for psychological science. , 1987, Science.

[31]  Douglas L. Hintzman,et al.  Judgments of frequency and recognition memory in a multiple-trace memory model. , 1988 .

[32]  F. Gregory Ashby,et al.  Toward a Unified Theory of Similarity and Recognition , 1988 .

[33]  Paul E. Green,et al.  Multidimensional Scaling: Concepts and Applications , 1989 .

[34]  P. Amato Dimensions of the Family Environment as Perceived by Children: A Multidimensional Scaling Analysis. , 1990 .

[35]  Robert L. Goldstone,et al.  Relational similarity and the nonindependence of features in similarity judgments , 1991, Cognitive Psychology.

[36]  J D Carroll,et al.  Multidimensional scaling of painful and innocuous electrocutaneous stimuli: Reliability and individual differences , 1991, Perception & psychophysics.

[37]  R. Nosofsky Similarity Scaling and Cognitive Process Models , 1992 .

[38]  Mark Holliins,et al.  Perceptual dimensions of tactile surface texture: A multidimensional scaling analysis , 1993, Perception & psychophysics.

[39]  R. Goldstone An efficient method for obtaining similarity data , 1994 .

[40]  Robert L. Goldstone The role of similarity in categorization: providing a groundwork , 1994, Cognition.

[41]  J. Douglas Carroll,et al.  Psychometric Methods in Marketing Research: Part II, Multidimensional Scaling , 1997 .

[42]  Robert L. Goldstone,et al.  Similarity in context , 1997, Memory & cognition.

[43]  S. Goldinger Echoes of echoes? An episodic theory of lexical access. , 1998, Psychological review.

[44]  P. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 1999 .

[45]  M. Lee Determining the Dimensionality of Multidimensional Scaling Representations for Cognitive Modeling. , 2001, Journal of mathematical psychology.

[46]  R. Shepard,et al.  How a cognitive psychologist came to seek universal laws , 2004, Psychonomic bulletin & review.

[47]  S. Goldinger,et al.  Episodic memory reflected in printed word naming , 2004, Psychonomic bulletin & review.

[48]  P. Groenen,et al.  Avoiding degeneracy in multidimensional unfolding by penalizing on the coefficient of variation , 2005 .

[49]  Damien Brémaud,et al.  An alternative to external preference mapping based on consumer perceptive mapping , 2006 .

[50]  Michael Leon,et al.  Predicting odorant quality perceptions from multidimensional scaling of olfactory bulb glomerular activity patterns. , 2006, Behavioral neuroscience.

[51]  A. Kappers,et al.  Analysis of haptic perception of materials by multidimensional scaling and physical measurements of roughness and compressibility. , 2006, Acta psychologica.

[52]  Gyslain Giguère,et al.  Collecting and analyzing data in multidimensional scaling experiments: A guide for psychologists using SPSS , 2006 .

[53]  Cody Ding,et al.  Multidimensional scaling modelling approach to latent profile analysis in psychological research , 2006 .

[54]  N. Jaworska,et al.  A Review of Multidimensional Scaling (MDS) and its Utility in Various Psychological Domains , 2009 .

[55]  T. Rogers,et al.  Are judgments of semantic relatedness systematically impaired in Alzheimer's disease? , 2009, Neuropsychologia.

[56]  T. Rogers,et al.  re judgments of semantic relatedness systematically impaired in lzheimer ’ s disease ? , 2009 .

[57]  Timothy F. Brady,et al.  Conceptual Distinctiveness Supports Detailed Visual Long-term Memory for Real-world Objects the Fidelity of Long-term Memory for Visual Information , 2022 .

[58]  Stephen D. Goldinger,et al.  A multidimensional scaling analysis of own- and cross-race face spaces , 2010, Cognition.

[59]  Man-Suk Oh,et al.  A simple and efficient Bayesian procedure for selecting dimensionality in multidimensional scaling , 2012, J. Multivar. Anal..

[60]  N. Kriegeskorte,et al.  Inverse MDS: Inferring Dissimilarity Structure from Multiple Item Arrangements , 2012, Front. Psychology.

[61]  R. Goebel,et al.  Local Discriminability Determines the Strength of Holistic Processing for Faces in the Fusiform Face Area , 2013, Front. Psychology.

[62]  Michael C. Hout,et al.  The versatility of SpAM: a fast, efficient, spatial method of data collection for multidimensional scaling. , 2013, Journal of experimental psychology. General.

[63]  Willem J. Heiser,et al.  PROXSCAL: A Multidimensional Scaling Program for Individual Differences Scaling with Constraints , 2014 .