Application of the Carman–Kozeny Correlation to a High‐Porosity and Anisotropic Consolidated Medium: The Compressed Expanded Natural Graphite

The Carman–Kozeny correlation is applied to a medium which is consolidated, highly porous and anisotropic: the expanded then compressed natural graphite. The effective textural properties (i.e. the mean pore diameter, porosity and tortuosity) have been measured by a mercury porosimeter and a heterogeneous diffusion cell. The texture and the permeability (according to the Darcy's law) measured for the two main directions of these orthotropic porous media change over a very wide range depending on their apparent mass densities. Experimental data show that only a part of the total porosity participates in the gas flow in steady state conditions.

[1]  O'Carroll,et al.  Generalization of the Poiseuille law for one- and two-phase flow in a random capillary network. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[2]  R. S. Krowicki,et al.  Automating the Arealometer: Examination of the Kozeny Equation , 1991 .

[3]  William M. Deen,et al.  Hydraulic permeability of agarose gels , 1996 .

[4]  Karsten Pruess,et al.  Gas Flow in Porous Media With Klinkenberg Effects , 1996 .

[5]  Shong-Leih Lee,et al.  Modeling of Darcy-Forchheimer drag for fluid flow across a bank of circular cylinders , 1997 .

[6]  P. Carman,et al.  Flow of gases through porous media , 1956 .

[7]  Norman Epstein,et al.  On tortuosity and the tortuosity factor in flow and diffusion through porous media , 1989 .

[8]  Moh’d A. Al-Nimr,et al.  Transient non-Darcian forced convection flow in a pipe partially filled with a porous material , 1998 .

[9]  A. Hurd,et al.  Compression effects in mercury porosimetry , 1990 .

[10]  S. Ergun Fluid flow through packed columns , 1952 .

[11]  S. Mauran,et al.  Compression uniaxiale d'un mlange binaire poreux trs dformable dans un moule cylindrique , 1995 .

[12]  Y. Takatsu,et al.  Turbulence model for flow through porous media , 1996 .

[13]  A. Herold,et al.  Etude de l'exfoliation des composés d'insertion graphite-trioxyde de soufre , 1986 .

[14]  Darsh T. Wasan,et al.  Flow of Single-Phase Fluids through Fibrous Beds , 1970 .

[15]  A. G. Altschaeffl,et al.  Pore Distribution and Permeability of Silty Clays , 1979 .

[16]  G. F. Kamst,et al.  Permeability of filter cakes of palm oil in relation to mechanical expression , 1997 .

[17]  John-Chang Chen,et al.  Permeability of gigaporous particles , 1996 .

[18]  Jacob Bear,et al.  Effective and relative permeabilities of anisotropie porous media , 1987 .

[19]  E. Alison Flood,et al.  The solid-gas interface, , 1967 .

[20]  D. Winslow The validity of high pressure mercury intrusion porosimetry , 1978 .

[21]  John Evans,et al.  Kinetics of capillary extraction of organic vehicle from ceramic bodies. Part I: Flow in porous media , 1991 .

[22]  F. Dullien Porous Media: Fluid Transport and Pore Structure , 1979 .

[23]  R. Datta,et al.  Correlation of Permeability and Solute Uptake in Membranes of Arbitrary Pore Morphology , 1995 .

[24]  Bernard Spinner,et al.  A new analytical model for solid-gas thermochemical reactors based on thermophysical properties of the reactive medium , 1997 .

[25]  The effect of inertia on free convection from a horizontal surface embedded in a porous medium , 1996 .

[26]  M. Wyllie The fundamentals of electric log interpretation , 1957 .

[27]  Kun-Hong Lee,et al.  Porous graphite matrix for chemical heat pumps , 1998 .

[28]  A. Katz,et al.  Prediction of rock electrical conductivity from mercury injection measurements , 1987 .

[29]  Ka Ming Ng,et al.  A generalized Blake‐Kozeny equation for multisized spherical particles , 1991 .