ABF++: fast and robust angle based flattening

Conformal parameterization of mesh models has numerous applicationsin geometry processing. Conformality is desirable for remeshing,surface reconstruction, and many other mesh processingapplications. Subject to the conformality requirement, theseapplications typically benefit from parameterizations with smallerstretch. The Angle Based Flattening (ABF) method, presented a fewyears ago, generates provably valid conformal parameterizationswith low stretch. However, it is quite time-consuming and becomeserror prone for large meshes due to numerical error accumulation.This work presents ABF++, a highly efficientextension of the ABF method, that overcomes these drawbacks whilemaintaining all the advantages of ABF. ABF++ robustly parameterizesmeshes of hundreds of thousands and millions of triangles withinminutes. It is based on three main components: (1) a new numericalsolution technique that dramatically reduces the dimension of thelinear systems solved at each iteration, speeding up the solution;(2) a new robust scheme for reconstructing the 2D coordinates fromthe angle space solution that avoids the numerical instabilitieswhich hindered the ABF reconstruction scheme; and (3) an efficienthierarchical solution technique. The speedup with (1) does not comeat the expense of greater distortion. The hierarchical technique(3) enables parameterization of models with millions of faces inseconds at the expense of a minor increase in parametricdistortion. The parameterization computed by ABF++ are provablyvalid, that is they contain no flipped triangles. As a result ofthese extensions, the ABF++ method is extremely suitable forrobustly and efficiently parameterizing models forgeometry-processing applications.

[1]  W. T. Tutte Convex Representations of Graphs , 1960 .

[2]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[3]  Anne Verroust-Blondet,et al.  Interactive texture mapping , 1993, SIGGRAPH.

[4]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[5]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[6]  Michael S. Floater,et al.  Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..

[7]  David P. Dobkin,et al.  MAPS: multiresolution adaptive parameterization of surfaces , 1998, SIGGRAPH.

[8]  Peter Lindstrom,et al.  Fast and memory efficient polygonal simplification , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[9]  James Demmel,et al.  A Supernodal Approach to Sparse Partial Pivoting , 1999, SIAM J. Matrix Anal. Appl..

[10]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[11]  K. Hormann,et al.  MIPS: An Efficient Global Parametrization Method , 2000 .

[12]  Pedro V. Sander,et al.  Texture mapping progressive meshes , 2001, SIGGRAPH.

[13]  Peter Schröder,et al.  Consistent mesh parameterizations , 2001, SIGGRAPH.

[14]  Alla Sheffer,et al.  Parameterization of Faceted Surfaces for Meshing using Angle-Based Flattening , 2001, Engineering with Computers.

[15]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[16]  Alla Sheffer,et al.  Preconditioners for Indefinite Linear Systems Arising in Surface Parameterization , 2001, International Meshing Roundtable Conference.

[17]  Steven J. Gortler,et al.  Geometry images , 2002, SIGGRAPH.

[18]  B. Lévy,et al.  Least Squares Conformal Maps , 2002 .

[19]  Pedro V. Sander,et al.  Signal-Specialized Parametrization , 2002, Rendering Techniques.

[20]  Mark Meyer,et al.  Intrinsic Parameterizations of Surface Meshes , 2002, Comput. Graph. Forum.

[21]  John C. Hart,et al.  Seamster: inconspicuous low-distortion texture seam layout , 2002, IEEE Visualization, 2002. VIS 2002..

[22]  Jung-Hong Chuang,et al.  Consistent Mesh Parameterizations and Its Application in Mesh Morphing , 2003 .

[23]  Bruno Lévy,et al.  Hierarchical least squares conformal map , 2003, 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings..

[24]  Sivan Toledo,et al.  High-Pass Quantization for Mesh Encoding , 2003, Symposium on Geometry Processing.

[25]  Reinhard Klein,et al.  An Adaptable Surface Parameterization Method , 2003, IMR.

[26]  Bruno Lévy Dual domain extrapolation , 2003, ACM Trans. Graph..

[27]  Michael S. Floater,et al.  Mean value coordinates , 2003, Comput. Aided Geom. Des..

[28]  Pierre Alliez,et al.  Anisotropic polygonal remeshing , 2003, ACM Trans. Graph..

[29]  LévyBruno Dual domain extrapolation , 2003 .

[30]  Jovan Popovic,et al.  Deformation transfer for triangle meshes , 2004, ACM Trans. Graph..

[31]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[32]  Hans-Peter Seidel,et al.  A fast and simple stretch-minimizing mesh parameterization , 2004, Proceedings Shape Modeling Applications, 2004..

[33]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[34]  Christian Rössl,et al.  Variations on Angle Based Flattening , 2005, Advances in Multiresolution for Geometric Modelling.

[35]  Andrei Khodakovsky,et al.  Multilevel Solvers for Unstructured Surface Meshes , 2005, SIAM J. Sci. Comput..