Logic Synthesis for Fault-Tolerant Quantum Computers

Efficient constructions for quantum logic are essential since quantum computation is experimentally challenging. This thesis develops quantum logic synthesis as a paradigm for reducing the resource overhead in fault-tolerant quantum computing. The model for error correction considered here is the surface code. After developing the theory behind general logic synthesis, the resource costs of magic-state distillation for the $T = \exp(i \pi (I-Z)/8)$ gate are quantitatively analyzed. The resource costs for a relatively new protocol distilling multi-qubit Fourier states are calculated for the first time. Four different constructions of the fault-tolerant Toffoli gate, including two which incorporate error detection, are analyzed and compared. The techniques of logic synthesis reduce the cost of fault-tolerant quantum computation by one to two orders of magnitude, depending on which benchmark is used. Using resource analysis for $T$ gates and Toffoli gates, several proposals for constructing arbitrary quantum gates are compared, including "Clifford+$T$" sequences, $V$-basis sequences, phase kickback, and programmable ancilla rotations. The application of arbitrary gates to quantum algorithms for simulating chemistry is discussed as well. Finally, the thesis examines the techniques which lead to efficient constructions of quantum logic, and these observations point to even broader applications of logic synthesis.

[1]  R. V. Meter,et al.  Layered architecture for quantum computing , 2010, 1010.5022.

[2]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[3]  D. D. Awschalom,et al.  Quantum information processing using quantum dot spins and cavity QED , 1999 .

[4]  Alfred V. Aho,et al.  A layered software architecture for quantum computing design tools , 2006, Computer.

[5]  A. Zeilinger,et al.  Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems , 2010, 1008.4116.

[6]  Peter Selinger,et al.  Quantum circuits of T-depth one , 2012, ArXiv.

[7]  William J. Munro,et al.  Using Quantum Computers for Quantum Simulation , 2010, Entropy.

[8]  Jungsang Kim,et al.  Integrated optical approach to trapped ion quantum computation , 2007, Quantum Inf. Comput..

[9]  Alexei Y. Kitaev,et al.  Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..

[10]  I. Kassal,et al.  Preparation of many-body states for quantum simulation. , 2008, The Journal of chemical physics.

[11]  Frederic T. Chong,et al.  A Practical Architecture for Reliable Quantum Computers , 2002, Computer.

[12]  Lorenza Viola,et al.  Robust dynamical decoupling of quantum systems with bounded controls. , 2003, Physical review letters.

[13]  H. Briegel,et al.  Fast simulation of stabilizer circuits using a graph-state representation , 2005, quant-ph/0504117.

[14]  P. Zoller,et al.  Quantum communication with dark photons , 1998, quant-ph/9805003.

[15]  E M Fortunato,et al.  Implementation of the quantum Fourier transform. , 2001, Physical review letters.

[16]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[17]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[18]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[19]  John Kubiatowicz,et al.  Running a Quantum Circuit at the Speed of Data , 2008, 2008 International Symposium on Computer Architecture.

[20]  B. Lanyon,et al.  Towards quantum chemistry on a quantum computer. , 2009, Nature chemistry.

[21]  Yasuhiro Takahashi,et al.  A quantum circuit for shor's factoring algorithm using 2n + 2 qubits , 2006, Quantum Inf. Comput..

[22]  Robert Raussendorf,et al.  Fault-tolerant quantum computation with high threshold in two dimensions. , 2007, Physical review letters.

[23]  R. Feynman Simulating physics with computers , 1999 .

[24]  Todd J. Martínez,et al.  Charge Transfer and Polarization in Solvated Proteins from Ab Initio Molecular Dynamics , 2011 .

[25]  Rodney Van Meter,et al.  Communication Links for Distributed Quantum Computation , 2007, IEEE Transactions on Computers.

[26]  M. Suzuki,et al.  General theory of higher-order decomposition of exponential operators and symplectic integrators , 1992 .

[27]  Dirk Englund,et al.  Controlled Phase Shifts with a Single Quantum Dot , 2008, Science.

[28]  Gang Chen,et al.  Single Quantum Dot Nonlinear Optical Spectroscopy , 2000 .

[29]  Adam C. Whiteside,et al.  Towards practical classical processing for the surface code: Timing analysis , 2012, 1202.5602.

[30]  T. Monz,et al.  An open-system quantum simulator with trapped ions , 2011, Nature.

[31]  M. Mosca,et al.  A Meet-in-the-Middle Algorithm for Fast Synthesis of Depth-Optimal Quantum Circuits , 2012, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[32]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[33]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[34]  Mark S. Gordon,et al.  Chapter 41 – Advances in electronic structure theory: GAMESS a decade later , 2005 .

[35]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[36]  M B Plenio,et al.  Efficient factorization with a single pure qubit and logN mixed qubits. , 2000, Physical review letters.

[37]  Andrew M. Steane Quantum computer architecture for fast entropy extraction , 2002, Quantum Inf. Comput..

[38]  Jeremy Levy,et al.  Quantum-dot cluster-state computing with encoded qubits , 2005, quant-ph/0506032.

[39]  A. Fowler Accurate simulations of planar topological codes cannot use cyclic boundaries , 2012, 1209.3539.

[40]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[41]  E. Knill,et al.  DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.

[42]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[43]  Dmitri Maslov,et al.  Polynomial-Time T-Depth Optimization of Clifford+T Circuits Via Matroid Partitioning , 2013, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[44]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[45]  D. Leung,et al.  Methodology for quantum logic gate construction , 2000, quant-ph/0002039.

[46]  Christian Schneider,et al.  Quantum dot induced phase shift in a pillar microcavity , 2011 .

[47]  C. Monroe,et al.  Scaling the Ion Trap Quantum Processor , 2013, Science.

[48]  John Kubiatowicz,et al.  Interconnection Networks for Scalable Quantum Computers , 2006, 33rd International Symposium on Computer Architecture (ISCA'06).

[49]  M. Suzuki,et al.  Generalized Trotter's formula and systematic approximants of exponential operators and inner derivations with applications to many-body problems , 1976 .

[50]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[51]  E. Knill Fault-Tolerant Postselected Quantum Computation: Schemes , 2004, quant-ph/0402171.

[52]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[53]  Christof Zalka Shor's algorithm with fewer (pure) qubits , 2006, quant-ph/0601097.

[54]  S. Höfling,et al.  Optically controlled semiconductor spin qubits for quantum information processing , 2009 .

[55]  R. V. Meter,et al.  DISTRIBUTED QUANTUM COMPUTATION ARCHITECTURE USING SEMICONDUCTOR NANOPHOTONICS , 2009, 0906.2686.

[56]  Erik Lucero,et al.  Implementing the Quantum von Neumann Architecture with Superconducting Circuits , 2011, Science.

[57]  J. Preskill Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[58]  Cody Jones,et al.  Composite Toffoli gate with two-round error detection , 2013, 1303.6971.

[59]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[60]  W. Munro,et al.  Architectural design for a topological cluster state quantum computer , 2008, 0808.1782.

[61]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[62]  Ben Reichardt,et al.  Quantum Universality from Magic States Distillation Applied to CSS Codes , 2005, Quantum Inf. Process..

[63]  Michael A. Nielsen,et al.  The Solovay-Kitaev algorithm , 2006, Quantum Inf. Comput..

[64]  Barenco,et al.  Quantum networks for elementary arithmetic operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[65]  Bryan Eastin,et al.  Distilling one-qubit magic states into Toffoli states , 2012, 1212.4872.

[66]  Christian Schneider,et al.  AlAs∕GaAs micropillar cavities with quality factors exceeding 150.000 , 2007 .

[67]  Mark Oskin,et al.  Architectural implications of quantum computing technologies , 2006, ACM J. Emerg. Technol. Comput. Syst..

[68]  Cody Jones,et al.  Low-overhead constructions for the fault-tolerant Toffoli gate , 2012, 1212.5069.

[69]  Richard Cleve,et al.  Fast parallel circuits for the quantum Fourier transform , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[70]  J. Preskill Fault-tolerant quantum computation , 1997, quant-ph/9712048.

[71]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[72]  D. Lidar,et al.  Fault-tolerant quantum dynamical decoupling , 2004, 2005 Quantum Electronics and Laser Science Conference.

[73]  Christof Zalka Simulating quantum systems on a quantum computer , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[74]  M. Greiner,et al.  Quantum simulation of antiferromagnetic spin chains in an optical lattice , 2011, Nature.

[75]  Quantum computing of quantum chaos in the kicked rotator model. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[76]  M. Mohseni,et al.  Direct characterization of quantum dynamics. , 2006, Physical review letters.

[77]  T. Ladd,et al.  Simple quantum logic gate with quantum dot cavity QED systems , 2011 .

[78]  U. Haeberlen,et al.  Coherent Averaging Effects in Magnetic Resonance , 1968 .

[79]  J. Olsen,et al.  Molecular electronic-structure theory , 2000 .

[80]  Jacob M. Taylor,et al.  Fault-tolerant architecture for quantum computation using electrically controlled semiconductor spins , 2005 .

[81]  Todd H. Stievater,et al.  Measurement of optical absorption by a single quantum dot exciton , 2002 .

[82]  A. Fowler,et al.  A bridge to lower overhead quantum computation , 2012, 1209.0510.

[83]  D. James,et al.  Scalable, high-speed measurement-based quantum computer using trapped ions. , 2008, Physical review letters.

[84]  Burton S. Kaliski,et al.  RSA factoring challenge , 2005, Encyclopedia of Cryptography and Security.

[85]  Rodney Van Meter,et al.  Distributed Arithmetic on a Quantum Multicomputer , 2006, 33rd International Symposium on Computer Architecture (ISCA'06).

[86]  Thomas G. Draper Addition on a Quantum Computer , 2000, quant-ph/0008033.

[87]  S. Economou,et al.  Proposal for optical U(1) rotations of electron spin trapped in a quantum dot , 2006 .

[88]  Adam Paetznick,et al.  Universal fault-tolerant quantum computation with only transversal gates and error correction. , 2013, Physical review letters.

[89]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[90]  Andrew M. Steane,et al.  How to build a 300 bit, 1 Giga-operation quantum computer , 2004, Quantum Inf. Comput..

[91]  B. Recht,et al.  Efficient discrete approximations of quantum gates , 2001, quant-ph/0111031.

[92]  Tim Byrnes,et al.  Simulating lattice gauge theories on a quantum computer (熱場の量子論とその応用) , 2006 .

[93]  Austin G. Fowler Constructing arbitrary Steane code single logical qubit fault-tolerant gates , 2011, Quantum Inf. Comput..

[94]  A. A. Gorbunov,et al.  Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots , 2002 .

[95]  Luming Duan,et al.  Colloquium: Quantum networks with trapped ions , 2010 .

[96]  S. Tashkun,et al.  An isotopic-independent highly accurate potential energy surface for CO2 isotopologues and an initial (12)C(16)O2 infrared line list. , 2012, The Journal of chemical physics.

[97]  Austin G. Fowler Low-overhead surface code logical Hadamard , 2012, Quantum Inf. Comput..

[98]  Michael J. Biercuk,et al.  Experimental Uhrig Dynamical Decoupling using Trapped Ions , 2009, 0902.2957.

[99]  Raymond Laflamme,et al.  The robustness of magic state distillation against errors in Clifford gates , 2012, Quantum Inf. Comput..

[100]  Barenco,et al.  Approximate quantum Fourier transform and decoherence. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[101]  D. Browne,et al.  Bound states for magic state distillation in fault-tolerant quantum computation. , 2009, Physical review letters.

[102]  G. Uhrig Keeping a quantum bit alive by optimized pi-pulse sequences. , 2006, Physical review letters.

[103]  Thomas G. Draper,et al.  A new quantum ripple-carry addition circuit , 2004, quant-ph/0410184.

[104]  T. Spiller,et al.  An introduction to quantum information processing: applications and realizations , 2005 .

[105]  A. Fowler,et al.  High-threshold universal quantum computation on the surface code , 2008, 0803.0272.

[106]  Jeremy Levy Quantum-information processing with ferroelectrically coupled quantum dots , 2001 .

[107]  W. D. Allen,et al.  Thermochemistry of key soot formation intermediates: C3H3 isomers. , 2007, The journal of physical chemistry. A.

[108]  Robert Raussendorf,et al.  Topological fault-tolerance in cluster state quantum computation , 2007 .

[109]  Krysta Marie Svore,et al.  A State Distillation Protocol to Implement Arbitrary Single-qubit Rotations , 2012, ArXiv.

[110]  Simon J. Devitt,et al.  Implementation of Shor's algorithm on a linear nearest neighbour qubit array , 2004, Quantum Inf. Comput..

[111]  O. Biham,et al.  SIMULATING ISING SPIN GLASSES ON A QUANTUM COMPUTER , 1996, quant-ph/9611038.

[112]  J. Whitfield,et al.  Simulation of electronic structure Hamiltonians using quantum computers , 2010, 1001.3855.

[113]  E. Knill Quantum computing with realistically noisy devices , 2005, Nature.

[114]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[115]  Thaddeus D. Ladd,et al.  Complete quantum control of a single quantum dot spin using ultrafast optical pulses , 2008, Nature.

[116]  D. Abrams,et al.  Simulation of Many-Body Fermi Systems on a Universal Quantum Computer , 1997, quant-ph/9703054.

[117]  Alán Aspuru-Guzik,et al.  Quantum algorithm for obtaining the energy spectrum of molecular systems. , 2008, Physical chemistry chemical physics : PCCP.

[118]  Simon J. Devitt,et al.  High Performance Quantum Computing , 2008, 0810.2444.

[119]  E. Purcell,et al.  Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments , 1954 .

[120]  S. Lloyd,et al.  Quantum Algorithm Providing Exponential Speed Increase for Finding Eigenvalues and Eigenvectors , 1998, quant-ph/9807070.

[121]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[122]  John Kubiatowicz,et al.  Automated generation of layout and control for quantum circuits , 2007, CF '07.

[123]  R. V. Meter,et al.  Fast quantum modular exponentiation , 2004, quant-ph/0408006.

[124]  S. Bravyi,et al.  Magic-state distillation with low overhead , 2012, 1209.2426.

[125]  A. Fowler,et al.  Scalability of Shor’s algorithm with a limited set of rotation gates , 2003, quant-ph/0306018.

[126]  Panos Aliferis,et al.  Subsystem fault tolerance with the Bacon-Shor code. , 2007, Physical review letters.

[127]  P. Høyer,et al.  Higher order decompositions of ordered operator exponentials , 2008, 0812.0562.

[128]  Deutsch,et al.  Quantum Privacy Amplification and the Security of Quantum Cryptography over Noisy Channels. , 1996, Physical review letters.

[129]  Alán Aspuru-Guzik,et al.  Faster quantum chemistry simulation on fault-tolerant quantum computers , 2012 .

[130]  Simon J. Devitt,et al.  Surface code implementation of block code state distillation , 2013, Scientific Reports.

[131]  Thomas G. Draper,et al.  A logarithmic-depth quantum carry-lookahead adder , 2006, Quantum Inf. Comput..

[132]  Bryan Eastin,et al.  Restrictions on transversal encoded quantum gate sets. , 2008, Physical review letters.

[133]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[134]  Robert D. Carr,et al.  Implications of electronics constraints for solid-state quantum error correction and quantum circuit failure probability , 2011, 1105.0682.

[135]  W. Munro,et al.  Quantum error correction for beginners , 2009, Reports on progress in physics. Physical Society.

[136]  Panos Aliferis Level Reduction and the Quantum Threshold Theorem , 2007 .

[137]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[138]  B. D. Clader,et al.  Preconditioned quantum linear system algorithm. , 2013, Physical review letters.

[139]  Jacobson,et al.  Wannier exciton superradiance in a quantum-well microcavity. , 1994, Physical review. B, Condensed matter.

[140]  Dorit Aharonov,et al.  Fault-tolerant quantum computation with constant error , 1997, STOC '97.

[141]  Austin G. Fowler,et al.  Surface code quantum error correction incorporating accurate error propagation , 2010, Quantum Inf. Comput..

[142]  M. Head‐Gordon,et al.  Chemistry on the computer , 2008 .

[143]  A. Badolato,et al.  Observation of Faraday rotation from a single confined spin , 2006, quant-ph/0610110.

[144]  Yasuhiro Takahashi,et al.  Quantum addition circuits and unbounded fan-out , 2009, Quantum Inf. Comput..

[145]  Lov K. Grover,et al.  Creating superpositions that correspond to efficiently integrable probability distributions , 2002, quant-ph/0208112.

[146]  Panos Aliferis,et al.  Effective fault-tolerant quantum computation with slow measurements. , 2007, Physical review letters.

[147]  Emanuel Knill,et al.  Magic-state distillation with the four-qubit code , 2012, Quantum Inf. Comput..

[148]  A. Steane,et al.  Quantum Computing with Trapped Ions, Atoms and Light , 2000, quant-ph/0004053.

[149]  Andrew J. Landahl,et al.  Fault-tolerant quantum computing with color codes , 2011, 1108.5738.

[150]  A. Fowler,et al.  Long-range coupling and scalable architecture for superconducting flux qubits , 2007, cond-mat/0702620.

[151]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[152]  Y. Gurevich,et al.  Efficient decomposition of single-qubit gates intoVbasis circuits , 2013, 1303.1411.

[153]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[154]  Frederic T. Chong,et al.  Building quantum wires: the long and the short of it , 2003, 30th Annual International Symposium on Computer Architecture, 2003. Proceedings..

[155]  Peter Selinger,et al.  Efficient Clifford+T approximation of single-qubit operators , 2012, Quantum Inf. Comput..

[156]  I. Kassal,et al.  Polynomial-time quantum algorithm for the simulation of chemical dynamics , 2008, Proceedings of the National Academy of Sciences.

[157]  Jiangfeng Du,et al.  NMR implementation of a molecular hydrogen quantum simulation with adiabatic state preparation. , 2010, Physical review letters.

[158]  Peter W. Shor,et al.  Fault-tolerant quantum computation , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[159]  Stéphane Beauregard Circuit for Shor's algorithm using 2n+3 qubits , 2003, Quantum Inf. Comput..

[160]  Alán Aspuru-Guzik,et al.  From computational discovery to experimental characterization of a high hole mobility organic crystal , 2011, Nature communications.

[161]  J. Whitfield,et al.  Adiabatic quantum simulators , 2010, 1002.0368.

[162]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. I. Use of Gaussian Expansions of Slater‐Type Atomic Orbitals , 1969 .

[163]  J. Cirac,et al.  Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network , 1996, quant-ph/9611017.

[164]  Robert D. Carr,et al.  Brief announcement: the impact of classical electronics constraints on a solid-state logical qubit memory , 2009, SPAA '09.

[165]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[166]  Andrew W. Cross,et al.  A quantum logic array microarchitecture: scalable quantum data movement and computation , 2005, 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'05).

[167]  Austin G. Fowler,et al.  Quantum circuit optimization by topological compaction in the surface code , 2013, 1304.2807.

[168]  John Preskill,et al.  Combining dynamical decoupling with fault-tolerant quantum computation , 2009, 0911.3202.

[169]  A. U.S.,et al.  Simulating Quantum Mechanics on a Quantum Computer ∗ , 1997 .

[170]  Peter Selinger,et al.  Exact synthesis of multi-qubit Clifford+T circuits , 2012, ArXiv.

[171]  Cody Jones,et al.  Multilevel distillation of magic states for quantum computing , 2012, 1210.3388.

[172]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[173]  T. H. Dunning Gaussian Basis Functions for Use in Molecular Calculations. III. Contraction of (10s6p) Atomic Basis Sets for the First‐Row Atoms , 1970 .

[174]  Andrew J. Landahl,et al.  Complex instruction set computing architecture for performing accurate quantum $Z$ rotations with less magic , 2013, 1302.3240.

[175]  Andrew W. Cross,et al.  Transversality Versus Universality for Additive Quantum Codes , 2007, IEEE Transactions on Information Theory.

[176]  L A Coldren,et al.  Nondestructive Optical Measurements of a Single Electron Spin in a Quantum Dot , 2006, Science.