Severe accident analysis of the Qinshan Nuclear Power Plant and evaluation of boundary conditions for ex-vessel heat transfer

[1]  Wenzhen Chen,et al.  Analysis of AP1000 severe accident induced by SBO using MAAP5 , 2021 .

[2]  M. Peng,et al.  Assessment of Severe Accident Management for Small IPWR under an ESBO Scenario , 2019, Science and Technology of Nuclear Installations.

[3]  Quan Zhou,et al.  Mass exchange between light metal layer and oxidic layer in lower plenum corium pool for a high steel content condition , 2019, Nuclear Engineering and Design.

[4]  M. Jobst,et al.  Severe accident management measures for a generic German PWR. Part I: Station blackout , 2018, Annals of Nuclear Energy.

[5]  Prabhat Munshi,et al.  AP1000 station blackout study with and without depressurization using RELAP5/SCDAPSIM , 2016 .

[6]  B. Sehgal,et al.  In-Vessel Melt Retention of Pressurized Water Reactors: Historical Review and Future Research Needs , 2016 .

[7]  Jong-Rong Wang,et al.  Station blackout mitigation strategies analysis for Maanshan PWR plant using TRACE , 2016 .

[8]  K. Okamoto,et al.  Assessment of the models in RELAP/SCDAPSIM with QUENCH-06 analysis , 2015 .

[9]  Longze Li,et al.  Severe accident analysis for a typical PWR using the MELCOR code , 2014 .

[10]  Guanghui Su,et al.  A simple novel analysis procedure for IVR calculation in core-molten severe accident , 2011 .

[11]  A. Miassoedov,et al.  In-vessel melt pool coolibility test—Description and results of LIVE experiments , 2010 .

[12]  G. H. Su,et al.  Analysis of safety margin of in-vessel retention for AP1000 , 2010 .

[13]  J. K. Hohorst,et al.  Role of RELAP/SCDAPSIM in Nuclear Safety , 2010 .

[14]  J. Seiler,et al.  THERMAL HYDRAULIC PHENOMENA IN CORIUM POOLS : THE BALI EXPERIMENT. , 1999 .

[15]  T. G. Theofanous,et al.  The first results from the ACOPO experiment , 1997 .

[16]  O. Kymäläinen,et al.  In-vessel coolability and retention of a core melt , 1997 .