Nickel and its isotopes in organic-rich sediments: implications for oceanic budgets and a potential record of ancient seawater

[1]  D. Bianchi,et al.  Global niche of marine anaerobic metabolisms expanded by particle microenvironments , 2018, Nature Geoscience.

[2]  T. Hirata,et al.  A simple and rapid method for isotopic analysis of nickel, copper, and zinc in seawater using chelating extraction and anion exchange. , 2017, Analytica chimica acta.

[3]  R. Sherrell,et al.  Elevated trace metal content of prokaryotic communities associated with marine oxygen deficient zones , 2017 .

[4]  T. Lyons,et al.  The oceanic budgets of nickel and zinc isotopes: the importance of sulfidic environments as illustrated by the Black Sea , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[5]  C. Peacock,et al.  Release of Ni from birnessite during transformation of birnessite to todorokite: Implications for Ni cycling in marine sediments , 2016 .

[6]  Y. Fouquet,et al.  Comparative geochemistry of four ferromanganese crusts from the Pacific Ocean and significance for the use of Ni isotopes as paleoceanographic tracers , 2016 .

[7]  J. Cullen,et al.  Decoupling of zinc and silicic acid in the subarctic northeast Pacific interior , 2015 .

[8]  H. Brumsack,et al.  Nickel as indicator of fresh organic matter in upwelling sediments , 2015 .

[9]  T. Bontognali,et al.  Methanogenesis produces strong 13C enrichment in stromatolites of Lagoa Salgada, Brazil: a modern analogue for Palaeo‐/Neoproterozoic stromatolites? , 2015, Geobiology.

[10]  T. Lyons,et al.  Controls on trace metal authigenic enrichment in reducing sediments: Insights from modern oxygen-deficient settings , 2015, American Journal of Science.

[11]  F. Albarède,et al.  Density functional theory estimation of isotope fractionation of Fe, Ni, Cu, and Zn among species relevant to geochemical and biological environments , 2014 .

[12]  T. Lyons,et al.  A modern framework for the interpretation of 238U/235U in studies of ancient ocean redox , 2014 .

[13]  J. Christian,et al.  Undocumented water column sink for cadmium in open ocean oxygen-deficient zones , 2014, Proceedings of the National Academy of Sciences.

[14]  D. Vance,et al.  Heavy nickel isotope compositions in rivers and the oceans , 2014 .

[15]  W. Landing,et al.  The oceanic mass balance of copper and zinc isotopes, investigated by analysis of their inputs, and outputs to ferromanganese oxide sediments , 2014 .

[16]  K. Bruland,et al.  Controls of Trace Metals in Seawater , 2013 .

[17]  A. Bekker,et al.  Nickel Isotope Variations in Terrestrial Silicate Rocks and Geological Reference Materials Measured by MC‐ICP‐MS , 2013 .

[18]  J. Hein,et al.  Nickel isotopic compositions of ferromanganese crusts and the constancy of deep ocean inputs and continental weathering effects over the Cenozoic , 2013 .

[19]  F. Albarède,et al.  A Zn isotope perspective on the rise of continents , 2013, Geobiology.

[20]  D. M. Nelson,et al.  Role of diatoms in nickel biogeochemistry in the ocean , 2012 .

[21]  Eric H. Oelkers,et al.  Riverine particulate material dissolution in seawater and its implications for the global cycles of the elements Dissolution du materiel particulaire de riviere dans l'eau de mer et ses implications pour les cycles globaux des elements , 2012 .

[22]  M. Beck,et al.  Underestimation of the authigenic fraction of Cu and Ni in organic-rich sediments , 2012 .

[23]  D. M. Nelson,et al.  Metal quotas of plankton in the equatorial Pacific Ocean , 2011 .

[24]  José Garcés-Vargas,et al.  Vertical and horizontal extension of the oxygen minimum zone in the eastern South Pacific Ocean , 2009 .

[25]  C. House,et al.  A biomarker based on the stable isotopes of nickel , 2009, Proceedings of the National Academy of Sciences.

[26]  S. Ragsdale,et al.  Nickel-based Enzyme Systems* , 2009, The Journal of Biological Chemistry.

[27]  N. Arndt,et al.  Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event , 2009, Nature.

[28]  A. Bowie,et al.  Spatial and temporal distribution of Fe, Ni, Cu and Pb along 140°E in the Southern Ocean during austral summer 2001/02 , 2008 .

[29]  C. Peacock,et al.  Sorption of Ni by birnessite: Equilibrium controls on Ni in seawater , 2007 .

[30]  A. Paytan,et al.  The oceanic phosphorus cycle. , 2007, Chemical reviews.

[31]  J. Eigenbrode,et al.  Late Archean rise of aerobic microbial ecosystems , 2006, Proceedings of the National Academy of Sciences.

[32]  James F. Kasting,et al.  Methane and climate during the Precambrian era , 2005 .

[33]  N. Mahowald,et al.  Global Iron Connections Between Desert Dust, Ocean Biogeochemistry, and Climate , 2005, Science.

[34]  J. Kallmeyer,et al.  Geochemistry of Peruvian near-surface sediments , 2004 .

[35]  A. Anbar,et al.  Molybdenum Isotope Evidence for Widespread Anoxia in Mid-Proterozoic Oceans , 2004, Science.

[36]  J. Kramers,et al.  Molybdenum isotope records as a potential new proxy for paleoceanography , 2003 .

[37]  D. Mackey,et al.  Trace metals in the Western Pacific: temporal and spatial variability in the concentrations of Cd, Cu, Mn and Ni , 2002 .

[38]  M. Mottl,et al.  Trace element and REE composition of a low-temperature ridge-flank hydrothermal spring , 2002 .

[39]  E. Oelkers,et al.  The rainbow vent fluids (36°14′N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids , 2002 .

[40]  D. M. Nelson,et al.  The Silica Balance in the World Ocean: A Reestimate , 1995, Science.

[41]  J. Hedges,et al.  Sedimentary organic matter preservation: an assessment and speculative synthesis , 1995 .

[42]  R. Jahnke,et al.  Evidence for enhanced phosphorus regeneration from marine sediments overlain by oxygen depleted waters , 1994 .

[43]  R. Jahnke,et al.  Early diagenesis in differing depositional environments: The response of transition metals in pore water , 1990 .

[44]  H. Brumsack Geochemistry of recent TOC-rich sediments from the Gulf of California and the Black Sea , 1989 .

[45]  E. Boyle,et al.  The chemical mass balance of the amazon plume—II. Copper, nickel, and cadmium , 1982 .

[46]  Kenneth W. Bruland,et al.  Oceanographic distributions of cadmium, zinc, nickel, and copper in the North Pacific , 1980 .

[47]  E. Boyle,et al.  On the marine geochemistry of nickel , 1976 .

[48]  T. Elliott,et al.  The Isotope Geochemistry of Ni , 2017 .

[49]  Vance,et al.  Phase partitioning of transition metals and their isotopes in the particulate load of the Amazon River , 2017 .

[50]  M. Lohan,et al.  Negligible Ni isotope fractionation associated with phytoplankton uptake in the South Atlantic Ocean , 2017 .

[51]  R. Rudnick,et al.  Composition of the Continental Crust , 2014 .

[52]  R. Losno,et al.  Dissolution and solubility of trace metals from natural and anthropogenic aerosol particulate matter. , 2005, Chemosphere.

[53]  P. Tréguer,et al.  Si/C decoupling in the world ocean: is the Southern Ocean different? , 2002 .

[54]  W. Landing,et al.  Thermodynamic Modeling of Trace Metal Speciation in the Black Sea , 1991 .

[55]  E. Suess,et al.  Coastal upwelling and a history of organic-rich mudstone deposition off Peru , 1987, Geological Society, London, Special Publications.

[56]  J. Edmond,et al.  Chemical dynamics of the Changjiang estuary , 1985 .

[57]  S. E. Calvert,et al.  Geochemistry of Namibian Shelf Sediments , 1983 .