Pointwise rates of convergence for the Oliker–Prussner method for the Monge–Ampère equation

[1]  J. Mirebeau Discretization of the 3D Monge-Ampere operator, between Wide Stencils and Power Diagrams , 2015, 1503.00947.

[2]  R. Nochetto,et al.  Discrete ABP Estimate and Convergence Rates for Linear Elliptic Equations in Non-divergence Form , 2014, Foundations of Computational Mathematics.

[3]  Jean-Marie Mirebeau,et al.  Monotone and consistent discretization of the Monge-Ampère operator , 2014, Math. Comput..

[4]  Quentin Mérigot,et al.  Handling Convexity-Like Constraints in Variational Problems , 2014, SIAM J. Numer. Anal..

[5]  Gerard Awanou,et al.  Standard finite elements for the numerical resolution of the elliptic Monge–Ampère equation: classical solutions , 2013, 1310.4576.

[6]  Gerard Awanou,et al.  Standard finite elements for the numerical resolution of the elliptic Monge-Ampere equation: Aleksandrov solutions , 2013, 1310.4568.

[7]  Xiaobing Feng,et al.  Convergent finite difference methods for one-dimensional fully nonlinear second order partial differential equations , 2012, J. Comput. Appl. Math..

[8]  S. C. Brenner,et al.  Finite element approximations of the three dimensional Monge-Ampère equation , 2012 .

[9]  S. C. Brenner,et al.  {C}^0$ penalty methods for the fully nonlinear Monge-Ampère equation , 2011 .

[10]  Adam M. Oberman A Numerical Method for Variational Problems with Convexity Constraints , 2011, SIAM J. Sci. Comput..

[11]  Michael Holst,et al.  Efficient mesh optimization schemes based on Optimal Delaunay Triangulations , 2011 .

[12]  Susanne C. Brenner,et al.  C0 penalty methods for the fully nonlinear Monge-Ampère equation , 2011, Math. Comput..

[13]  Adam M. Oberman,et al.  Convergent Finite Difference Solvers for Viscosity Solutions of the Elliptic Monge-Ampère Equation in Dimensions Two and Higher , 2010, SIAM J. Numer. Anal..

[14]  Adam M. Oberman,et al.  Two Numerical Methods for the elliptic Monge-Ampère equation , 2010 .

[15]  Adam M. Oberman,et al.  Fast finite difference solvers for singular solutions of the elliptic Monge-Ampère equation , 2010, J. Comput. Phys..

[16]  Michael Neilan,et al.  A nonconforming Morley finite element method for the fully nonlinear Monge-Ampère equation , 2010, Numerische Mathematik.

[17]  Pedro Morin,et al.  On Convex Functions and the Finite Element Method , 2008, SIAM J. Numer. Anal..

[18]  Adam M. Oberman Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian , 2008 .

[19]  Klaus Böhmer,et al.  On Finite Element Methods for Fully Nonlinear Elliptic Equations of Second Order , 2008, SIAM J. Numer. Anal..

[20]  Xiaobing Feng,et al.  Analysis of Galerkin Methods for the Fully Nonlinear Monge-Ampère Equation , 2007, J. Sci. Comput..

[21]  Xiaobing Feng,et al.  Mixed Finite Element Methods for the Fully Nonlinear Monge-Ampère Equation Based on the Vanishing Moment Method , 2007, SIAM J. Numer. Anal..

[22]  Roland Glowinski,et al.  Numerical methods for fully nonlinear elliptic equations of the Monge-Ampère type , 2006 .

[23]  Roland Glowinski,et al.  Numerical solution of the two-dimensional elliptic Monge–Ampère equation with Dirichlet boundary conditions: a least-squares approach , 2004 .

[24]  Roland Glowinski,et al.  Numerical solution of the two-dimensional elliptic Monge-Ampère equation with Dirichlet boundary conditions: an augmented Lagrangian approach , 2003 .

[25]  Philippe Choné,et al.  NON-CONVERGENCE RESULT FOR CONFORMAL APPROXIMATION OF VARIATIONAL PROBLEMS SUBJECT TO A CONVEXITY CONSTRAINT , 2001 .

[26]  Bertrand Maury,et al.  A numerical approach to variational problems subject to convexity constraint , 2001, Numerische Mathematik.

[27]  Hung-Ju Kuo,et al.  A note on the discrete Aleksandrov-Bakelman maximum principle , 2000 .

[28]  Herbert Edelsbrunner,et al.  Triangulations and meshes in computational geometry , 2000, Acta Numerica.

[29]  Hung-Ju Kuo,et al.  Positive difference operators on general meshes , 1996 .

[30]  L. Caffarelli,et al.  Fully Nonlinear Elliptic Equations , 1995 .

[31]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[32]  N. Trudinger,et al.  Discrete methods for fully nonlinear elliptic equations , 1992 .

[33]  Barry Joe,et al.  Construction of three-dimensional Delaunay triangulations using local transformations , 1991, Comput. Aided Geom. Des..

[34]  G. Barles,et al.  Convergence of approximation schemes for fully nonlinear second order equations , 1990, 29th IEEE Conference on Decision and Control.

[35]  Hung-Ju Kuo,et al.  Linear elliptic difference inequalities with random coefficients , 1990 .

[36]  Vladimir Oliker,et al.  On the numerical solution of the equation $$\frac{{\partial ^2 z}}{{\partial x^2 }}\frac{{\partial ^2 z}}{{\partial y^2 }} - \left( {\frac{{\partial ^2 z}}{{\partial x\partial y}}} \right)^2 = f$$ and its discretizations, I , 1989 .

[37]  A. Figalli On the Monge-Ampère equation , 2019 .

[38]  Michael Neilan,et al.  Quadratic Finite Element Approximations of the Monge-Ampère Equation , 2012, Journal of Scientific Computing.

[39]  Xiaobing Feng,et al.  Vanishing Moment Method and Moment Solutions for Fully Nonlinear Second Order Partial Differential Equations , 2009, J. Sci. Comput..

[40]  Danny C. Sorensen,et al.  A quadratically constrained minimization problem arising from PDE of Monge–Ampère type , 2009, Numerical Algorithms.

[41]  R. Glowinski,et al.  An augmented Lagrangian approach to the numerical solution of the Dirichlet problem for the elliptic Monge-Ampère equation in two dimensions. , 2006 .

[42]  LongChen,et al.  OPTIMAL DELAUNAY TRIANGULATIONS , 2004 .

[43]  V. V. Buldygin,et al.  Brunn-Minkowski inequality , 2000 .

[44]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[45]  L. Caffarelli Interior $W^{2,p}$ estimates for solutions of the Monge-Ampère equation , 1990 .

[46]  Luis A. Caffarelli,et al.  A localization property of viscosity solutions to the Monge-Ampere equation and their strict convexity , 1990 .