Elastic Lennard-Jones polymers meet clusters: differences and similarities.

We investigate solid-solid and solid-liquid transitions of elastic flexible off-lattice polymers with Lennard-Jones monomer-monomer interaction and anharmonic springs by means of sophisticated variants of multicanonical Monte Carlo methods. We find that the low-temperature behavior depends strongly and nonmonotonically on the system size and exhibits broad similarities to unbound atomic clusters. Particular emphasis is dedicated to the classification of icosahedral and nonicosahedral low-energy polymer morphologies.

[1]  B. Berg,et al.  Multicanonical algorithms for first order phase transitions , 1991 .

[2]  David Romero,et al.  The optimal geometry of Lennard-Jones clusters: 148-309 , 1999 .

[3]  Jonathan P. K. Doye,et al.  Entropic effects on the structure of Lennard-Jones clusters , 2001 .

[4]  An off-lattice Wang-Landau study of the coil-globule and melting transitions of a flexible homopolymer. , 2006, The Journal of chemical physics.

[5]  Wolfhard Janke,et al.  Freezing and collapse of flexible polymers on regular lattices in three dimensions. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  J. Doye,et al.  The effect of the range of the potential on the structures of clusters , 1995 .

[7]  D. Landau,et al.  Developments in Wang-Landau Simulations of a Simple Continuous Homopolymer , 2008 .

[8]  J. Northby Structure and binding of Lennard‐Jones clusters: 13≤N≤147 , 1987 .

[9]  A. Khokhlov,et al.  Some problems of the statistical physics of polymer chains with volume interaction , 1978 .

[10]  Berg,et al.  Multicanonical ensemble: A new approach to simulate first-order phase transitions. , 1992, Physical review letters.

[11]  Kurt Kremer,et al.  Monte Carlo simulation of lattice models for macromolecules , 1988 .

[12]  Haojun Liang,et al.  First-order transition of a homopolymer chain with Lennard-Jones potential , 2000 .

[13]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[14]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[15]  K. Binder,et al.  Off-lattice Monte Carlo methods for coarse-grained models of polymeric materials and selected applications , 2002 .

[16]  N. Johnson Convex Polyhedra with Regular Faces , 1966, Canadian Journal of Mathematics.

[17]  Jonathan P K Doye,et al.  Structural transitions in the 309-atom magic number Lennard-Jones cluster. , 2006, The Journal of chemical physics.

[18]  Vladimir A Mandelshtam,et al.  Solid-solid structural transformations in Lennard-Jones clusters: accurate simulations versus the harmonic superposition approximation. , 2007, The journal of physical chemistry. A.

[19]  J. Doye,et al.  Tetrahedral global minimum for the 98-atom Lennard-Jones cluster. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[21]  Wolfhard Janke,et al.  Surface effects in the crystallization process of elastic flexible polymers , 2009, 1002.2118.

[22]  J. Doye,et al.  Collapse of Lennard-Jones homopolymers: Size effects and energy landscapes , 2002 .

[23]  P. Steinhardt,et al.  Bond-orientational order in liquids and glasses , 1983 .

[24]  A. Khokhlov Theory of the polymer chain collapse for the d-dimensional case , 1981 .

[25]  Theta-point behavior of diluted polymer solutions: can one observe the universal logarithmic corrections predicted by field theory? , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[26]  J. Doye,et al.  Magic numbers and growth sequences of small face-centered-cubic and decahedral clusters , 1995 .

[27]  Kurt Binder,et al.  On the first-order collapse transition of a three-dimensional, flexible homopolymer chain model , 2005 .

[28]  Vladimir A Mandelshtam,et al.  Low-temperature structural transitions: circumventing the broken-ergodicity problem. , 2007, Physical review letters.

[29]  Wolfhard Janke,et al.  Multicanonical Monte Carlo simulations , 1998 .

[30]  Curtiss,et al.  Dynamics of Polymeric Liquids , .

[31]  J. King,et al.  Structure of epsilon15 bacteriophage reveals genome organization and DNA packaging/injection apparatus , 2006, Nature.

[32]  L. Piela,et al.  Molecular Dynamics on Deformed Potential Energy Hypersurfaces , 1995 .

[33]  B. Jonsson,et al.  Induction of structure and function in a designed peptide upon adsorption on a silica nanoparticle. , 2006, Angewandte Chemie.

[34]  Globule transitions of a single homopolymer: a Wang-Landau Monte Carlo study. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  David P. Landau,et al.  A Wang-Landau study of the phase transitions in a flexible homopolymer , 2009, Comput. Phys. Commun..

[36]  A. Mackay A dense non-crystallographic packing of equal spheres , 1962 .

[37]  P. Frantsuzov,et al.  Size-temperature phase diagram for small Lennard-Jones clusters. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.