The TIM Barrel Architecture Facilitated the Early Evolution of Protein-Mediated Metabolism

[1]  D. Baker,et al.  De novo design of a four-fold symmetric TIM-barrel protein with atomic-level accuracy , 2015, Nature chemical biology.

[2]  N. Hud,et al.  The Ribosome Challenge to the RNA World , 2015, Journal of Molecular Evolution.

[3]  B. Sjöberg,et al.  The Origin and Evolution of Ribonucleotide Reduction , 2015, Life.

[4]  Laura F. Landweber,et al.  LUCApedia: a database for the study of ancient life , 2012, Nucleic Acids Res..

[5]  J. Roth,et al.  Real-Time Evolution of New Genes by Innovation, Amplification, and Divergence , 2012, Science.

[6]  R. Samudrala,et al.  The Enzymatic and Metabolic Capabilities of Early Life , 2012, PloS one.

[7]  L. Landweber,et al.  Oxytricha as a modern analog of ancient genome evolution. , 2012, Trends in genetics : TIG.

[8]  J. Silberg,et al.  A transposase strategy for creating libraries of circularly permuted proteins , 2012, Nucleic acids research.

[9]  D. Caetano-Anollés,et al.  The Phylogenomic Roots of Modern Biochemistry: Origins of Proteins, Cofactors and Protein Biosynthesis , 2012, Journal of Molecular Evolution.

[10]  The UniProt Consortium,et al.  Reorganizing the protein space at the Universal Protein Resource (UniProt) , 2011, Nucleic Acids Res..

[11]  Susumu Goto,et al.  KEGG for integration and interpretation of large-scale molecular data sets , 2011, Nucleic Acids Res..

[12]  R. Merkl,et al.  Computational and experimental evidence for the evolution of a (beta alpha)8-barrel protein from an ancestral quarter-barrel stabilised by disulfide bonds. , 2010, Journal of molecular biology.

[13]  R. Samudrala,et al.  The evolution and functional repertoire of translation proteins following the origin of life , 2010, Biology Direct.

[14]  W. Martin,et al.  How did LUCA make a living? Chemiosmosis in the origin of life. , 2010, BioEssays : news and reviews in molecular, cellular and developmental biology.

[15]  Yang Zhang,et al.  I-TASSER: a unified platform for automated protein structure and function prediction , 2010, Nature Protocols.

[16]  P. Bork,et al.  Evolution of biomolecular networks — lessons from metabolic and protein interactions , 2009, Nature Reviews Molecular Cell Biology.

[17]  A. Mulkidjanian On the origin of life in the Zinc world: 1. Photosynthesizing, porous edifices built of hydrothermally precipitated zinc sulfide as cradles of life on Earth , 2009, Biology Direct.

[18]  Michael Y. Galperin,et al.  On the origin of life in the Zinc world. 2. Validation of the hypothesis on the photosynthesizing zinc sulfide edifices as cradles of life on Earth , 2009, Biology Direct.

[19]  Gustavo Caetano-Anollés,et al.  The origin and evolution of modern metabolism. , 2009, The international journal of biochemistry & cell biology.

[20]  Tim J. P. Hubbard,et al.  Data growth and its impact on the SCOP database: new developments , 2007, Nucleic Acids Res..

[21]  Yang Zhang,et al.  I-TASSER server for protein 3D structure prediction , 2008, BMC Bioinformatics.

[22]  Antonio Lazcano,et al.  The Very Early Stages of Biological Evolution and the Nature of the Last Common Ancestor of the Three Major Cell Domains , 2007 .

[23]  Gustavo Caetano-Anollés,et al.  Reductive evolution of architectural repertoires in proteomes and the birth of the tripartite world. , 2007, Genome research.

[24]  Gustavo Caetano-Anollés,et al.  The origin of modern metabolic networks inferred from phylogenomic analysis of protein architecture , 2007, Proceedings of the National Academy of Sciences.

[25]  Jay E. Mittenthal,et al.  MANET: tracing evolution of protein architecture in metabolic networks , 2006, BMC Bioinformatics.

[26]  J. Ferris,et al.  One-step, regioselective synthesis of up to 50-mers of RNA oligomers by montmorillonite catalysis. , 2006, Journal of the American Chemical Society.

[27]  J. Ferris,et al.  Formation of RNA oligomers on montmorillonite: Site of catalysis , 1996, Origins of life and evolution of the biosphere.

[28]  Leon Goldovsky,et al.  A minimal estimate for the gene content of the last universal common ancestor--exobiology from a terrestrial perspective. , 2006, Research in microbiology.

[29]  D. Catling,et al.  How Earth's atmosphere evolved to an oxic state: A status report , 2005 .

[30]  Edward N Trifonov,et al.  Closed Loops of TIM Barrel Protein Fold , 2005, Journal of biomolecular structure & dynamics.

[31]  J. Skolnick,et al.  TM-align: a protein structure alignment algorithm based on the TM-score , 2005, Nucleic acids research.

[32]  R. Doolittle,et al.  Phylogeny determined by protein domain content. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[33]  H. White Coenzymes as fossils of an earlier metabolic state , 1976, Journal of Molecular Evolution.

[34]  B. Höcker,et al.  Mimicking enzyme evolution by generating new (betaalpha)8-barrels from (betaalpha)4-half-barrels. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[35]  C. Ouzounis,et al.  Nucleic acid-binding metabolic enzymes: Living fossils of stereochemical interactions? , 1995, Journal of Molecular Evolution.

[36]  C. Drennan,et al.  AdoMet radical proteins--from structure to evolution--alignment of divergent protein sequences reveals strong secondary structure element conservation. , 2004, Nucleic acids research.

[37]  W. Eisenreich,et al.  A Possible Primordial Peptide Cycle , 2003, Science.

[38]  C. Chothia,et al.  Evolution of the Protein Repertoire , 2003, Science.

[39]  E. Koonin,et al.  Emergence of diverse biochemical activities in evolutionarily conserved structural scaffolds of proteins. , 2003, Current opinion in chemical biology.

[40]  Patrick Forterre,et al.  The origin of DNA genomes and DNA replication proteins. , 2002, Current opinion in microbiology.

[41]  C. Orengo,et al.  One fold with many functions: the evolutionary relationships between TIM barrel families based on their sequences, structures and functions. , 2002, Journal of molecular biology.

[42]  P. Aloy,et al.  Ribonucleotide Reductases: Divergent Evolution of an Ancient Enzyme , 2002, Journal of Molecular Evolution.

[43]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[44]  C. Chothia,et al.  Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. , 2001, Journal of molecular biology.

[45]  M. Wilmanns,et al.  Divergent Evolution of (??)8-Barrel Enzymes , 2001, Biological chemistry.

[46]  P. Bork,et al.  Homology among (betaalpha)(8) barrels: implications for the evolution of metabolic pathways. , 2000, Journal of molecular biology.

[47]  W. Fontana,et al.  Plasticity, evolvability, and modularity in RNA. , 2000, The Journal of experimental zoology.

[48]  M Wilmanns,et al.  Structural evidence for evolution of the beta/alpha barrel scaffold by gene duplication and fusion. , 2000, Science.

[49]  T. Cech,et al.  The Ribosome Is a Ribozyme , 2000, Science.

[50]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[51]  L F Landweber,et al.  Do Proteins Predate DNA? , 1999, Science.

[52]  Stanley L. Miller,et al.  On the Origin of Metabolic Pathways , 1999, Journal of Molecular Evolution.

[53]  Nikos Kyrpides,et al.  Universal Protein Families and the Functional Content of the Last Universal Common Ancestor , 1999, Journal of Molecular Evolution.

[54]  P. Reichard,et al.  Ribonucleotide reductases. , 1998, Annual review of biochemistry.

[55]  John Maynard Smith,et al.  The major evolutionary transitions , 1995, Nature.

[56]  W. Gilbert,et al.  On the ancient nature of introns. , 1993, Gene.

[57]  M. Yarus How many catalytic RNAs? Ions and the Cheshire cat conjecture , 1993, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[58]  E. Webb Enzyme nomenclature 1992. Recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the Nomenclature and Classification of Enzymes. , 1992 .

[59]  G. Wächtershäuser,et al.  Evolution of the first metabolic cycles. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[60]  G. Wächtershäuser,et al.  Before enzymes and templates: theory of surface metabolism. , 1988, Microbiological reviews.

[61]  B. Ganem RNA world , 1987, Nature.

[62]  W. Gilbert Origin of life: The RNA world , 1986, Nature.

[63]  W. Gilbert,et al.  Genetic engineering in the Precambrian: structure of the chicken triosephosphate isomerase gene , 1985, Molecular and cellular biology.

[64]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.