Statistical perceptual maps: using confidence region ellipses to enhance the interpretations of brand positions in multidimensional scaling

Positioning is among a marketer’s preeminent strategic responsibilities. Positioning helps to clarify brand strengths among competitors and identify potential challenges of similar brands and possible substitutability. Assessments of positioning, from initial marketplace efforts to resources directed at modifications and re-positioning, are frequently assisted by the graphical representations of brands in multidimensional space. Such perceptual maps are constructed to reflect the closeness of brands and therefore the extent to which they are seen as interchangeable, versus distances between brands representing their relative positioning distinctiveness. To create perceptual maps, data are frequently obtained that comprise a sample of respondents rating a series of brands with respect to their perceived similarities and differences, as well as the status of each brand along multiple attributes. This research uses the variability inherent in such three-dimensional data to construct confidence regions around point estimates in perceptual maps. Current maps tend to be simply descriptive, with positions reflected by point estimates, but multivariate models including multidimensional scaling and multi-mode factor analysis can be modified to extract the subject heterogeneity and derive inferential perceptual maps. Confidence regions that overlap will indicate more clearly an inference of brand similarity, whereas non-overlapping regions imply statistically differentiated brand perceptions.

[1]  L. Tucker,et al.  An individual differences model for multidimensional scaling , 1963 .

[2]  T. W. Anderson ASYMPTOTIC THEORY FOR PRINCIPAL COMPONENT ANALYSIS , 1963 .

[3]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[4]  J. Ramsay Some statistical considerations in multidimensional scaling , 1969 .

[5]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[6]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[7]  L. Tucker Relations between multidimensional scaling and three-mode factor analysis , 1972 .

[8]  Richard J. Harris A primer of multivariate statistics , 1975 .

[9]  J. Ramsay Maximum likelihood estimation in multidimensional scaling , 1977 .

[10]  Peter M. Bentler,et al.  Statistical aspects of a three-mode factor analysis model , 1978 .

[11]  J. Ramsay Confidence regions for multidimensional scaling analysis , 1978 .

[12]  Yoshio Takane,et al.  Three notes on ALSCAL , 1978 .

[13]  J. Leeuw,et al.  Principal component analysis of three-mode data by means of alternating least squares algorithms , 1980 .

[14]  James O. Ramsay,et al.  Some small sample results for maximum likelihood estimation in multidimensional scaling , 1980 .

[15]  Yoshio Takane,et al.  Multidimensional successive categories scaling: A maximum likelihood method , 1981 .

[16]  Joseph L. Zinnes,et al.  Probabilistic multidimensional scaling: Complete and incomplete data , 1983 .

[17]  Sharon L. Weinberg,et al.  Confidence regions for INDSCAL using the jackknife and bootstrap techniques , 1984 .

[18]  Geert De Soete,et al.  The Wandering Ideal Point Model: A Probabilistic Multidimensional Unfolding Model for Paired Comparisons Data , 1986 .

[19]  J. O. Ramsey A PROC MATRIX program for preference-dissimilarity multidimensional scaling , 1986 .

[20]  Joseph L. Zinnes,et al.  A Probabilistic Model for the Multidimensional Scaling of Proximity and Preference Data , 1986 .

[21]  J. Eliashberg,et al.  A New Stochastic Multidimensional Unfolding Model for the Investigation of Paired Comparison Consumer Preference/Choice Data , 1987 .

[22]  George S. Day,et al.  Assessing Advantage: A Framework for Diagnosing Competitive Superiority , 1988 .

[23]  Jaewun Cho,et al.  A stochastic multidimensional scaling vector threshold model for the spatial representation of “pick any/n” data , 1989 .

[24]  B. Kemal Büyükkurt,et al.  Robustness and Small-Sample Properties of the Estimators of Probabilistic Multidimensional Scaling (PROSCAL) , 1990 .

[25]  W. DeSarbo,et al.  Multiclus: A new method for simultaneously performing multidimensional scaling and cluster analysis , 1991 .

[26]  W. DeSarbo,et al.  A stochastic multidimensional scaling procedure for the spatial representation of three-mode, three-way pick any/J data , 1991 .

[27]  Rabikar Chatterjee,et al.  Accommodating the effects of brand unfamiliarity in the multidimensional scaling of preference data , 1992 .

[28]  Suzanne Winsberg,et al.  A latent class approach to fitting the weighted Euclidean model, clascal , 1993 .

[29]  R. Harshman,et al.  PARAFAC: parallel factor analysis , 1994 .

[30]  Gregory Ashby,et al.  On the Dangers of Averaging Across Subjects When Using Multidimensional Scaling or the Similarity-Choice Model , 1994 .

[31]  G. Storms On the robustness of maximum likelihood scaling for violations of the error model , 1995 .

[32]  R. Bro PARAFAC. Tutorial and applications , 1997 .

[33]  Michel Wedel,et al.  A Comparison of Multidimensional Scaling Methods for Perceptual Mapping , 1999 .

[34]  R. Gonzalez,et al.  Random effects diagonal metric multidimensional scaling models , 2001 .

[35]  J. Berge,et al.  On uniqueness in candecomp/parafac , 2002 .

[36]  H. Kiers,et al.  Bootstrap confidence intervals for three‐way methods , 2004 .

[37]  Rasmus Bro,et al.  A comparison of algorithms for fitting the PARAFAC model , 2006, Comput. Stat. Data Anal..

[38]  A. Stegeman,et al.  On Kruskal's uniqueness condition for the Candecomp/Parafac decomposition , 2007 .

[39]  Crystal J. Scott,et al.  A Model-Based Approach for Visualizing the Dimensional Structure of Ordered Successive Categories Preference Data , 2008 .

[40]  Wayne S. DeSarbo,et al.  A Clusterwise Bilinear Multidimensional Scaling Methodology for Simultaneous Segmentation and Positioning Analyses , 2008 .

[41]  M. Porter The five competitive forces that shape strategy. , 2008, Harvard business review.

[42]  Willem J. Heiser,et al.  A Latent Class Multidimensional Scaling Model for Two-Way One-Mode Continuous Rating Dissimilarity Data , 2009 .

[43]  Manuel E. Sosa,et al.  Sus ingenieros hablan entre sí cuando deben hacerlo , 2008 .

[44]  Y. Wind,et al.  Product policy : concepts, methods, and strategy , 2010 .

[45]  M. Vichi,et al.  The K-INDSCAL Model for Heterogeneous Three-Way Dissimilarity Data , 2011, Psychometrika.

[46]  W. DeSarbo,et al.  A New Heterogeneous Multidimensional Unfolding Procedure , 2012 .

[47]  Mary Jo Bitner,et al.  Branded Service Encounters: Strategically Aligning Employee Behavior with the Brand Positioning , 2013 .

[48]  Tam T. T. Lam,et al.  Three-Mode Factor Analysis by Means of Candecomp/Parafac , 2013, Psychometrika.