Statistical perceptual maps: using confidence region ellipses to enhance the interpretations of brand positions in multidimensional scaling
暂无分享,去创建一个
[1] L. Tucker,et al. An individual differences model for multidimensional scaling , 1963 .
[2] T. W. Anderson. ASYMPTOTIC THEORY FOR PRINCIPAL COMPONENT ANALYSIS , 1963 .
[3] L. Tucker,et al. Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.
[4] J. Ramsay. Some statistical considerations in multidimensional scaling , 1969 .
[5] J. Chang,et al. Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .
[6] Richard A. Harshman,et al. Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .
[7] L. Tucker. Relations between multidimensional scaling and three-mode factor analysis , 1972 .
[8] Richard J. Harris. A primer of multivariate statistics , 1975 .
[9] J. Ramsay. Maximum likelihood estimation in multidimensional scaling , 1977 .
[10] Peter M. Bentler,et al. Statistical aspects of a three-mode factor analysis model , 1978 .
[11] J. Ramsay. Confidence regions for multidimensional scaling analysis , 1978 .
[12] Yoshio Takane,et al. Three notes on ALSCAL , 1978 .
[13] J. Leeuw,et al. Principal component analysis of three-mode data by means of alternating least squares algorithms , 1980 .
[14] James O. Ramsay,et al. Some small sample results for maximum likelihood estimation in multidimensional scaling , 1980 .
[15] Yoshio Takane,et al. Multidimensional successive categories scaling: A maximum likelihood method , 1981 .
[16] Joseph L. Zinnes,et al. Probabilistic multidimensional scaling: Complete and incomplete data , 1983 .
[17] Sharon L. Weinberg,et al. Confidence regions for INDSCAL using the jackknife and bootstrap techniques , 1984 .
[18] Geert De Soete,et al. The Wandering Ideal Point Model: A Probabilistic Multidimensional Unfolding Model for Paired Comparisons Data , 1986 .
[19] J. O. Ramsey. A PROC MATRIX program for preference-dissimilarity multidimensional scaling , 1986 .
[20] Joseph L. Zinnes,et al. A Probabilistic Model for the Multidimensional Scaling of Proximity and Preference Data , 1986 .
[21] J. Eliashberg,et al. A New Stochastic Multidimensional Unfolding Model for the Investigation of Paired Comparison Consumer Preference/Choice Data , 1987 .
[22] George S. Day,et al. Assessing Advantage: A Framework for Diagnosing Competitive Superiority , 1988 .
[23] Jaewun Cho,et al. A stochastic multidimensional scaling vector threshold model for the spatial representation of “pick any/n” data , 1989 .
[24] B. Kemal Büyükkurt,et al. Robustness and Small-Sample Properties of the Estimators of Probabilistic Multidimensional Scaling (PROSCAL) , 1990 .
[25] W. DeSarbo,et al. Multiclus: A new method for simultaneously performing multidimensional scaling and cluster analysis , 1991 .
[26] W. DeSarbo,et al. A stochastic multidimensional scaling procedure for the spatial representation of three-mode, three-way pick any/J data , 1991 .
[27] Rabikar Chatterjee,et al. Accommodating the effects of brand unfamiliarity in the multidimensional scaling of preference data , 1992 .
[28] Suzanne Winsberg,et al. A latent class approach to fitting the weighted Euclidean model, clascal , 1993 .
[29] R. Harshman,et al. PARAFAC: parallel factor analysis , 1994 .
[30] Gregory Ashby,et al. On the Dangers of Averaging Across Subjects When Using Multidimensional Scaling or the Similarity-Choice Model , 1994 .
[31] G. Storms. On the robustness of maximum likelihood scaling for violations of the error model , 1995 .
[32] R. Bro. PARAFAC. Tutorial and applications , 1997 .
[33] Michel Wedel,et al. A Comparison of Multidimensional Scaling Methods for Perceptual Mapping , 1999 .
[34] R. Gonzalez,et al. Random effects diagonal metric multidimensional scaling models , 2001 .
[35] J. Berge,et al. On uniqueness in candecomp/parafac , 2002 .
[36] H. Kiers,et al. Bootstrap confidence intervals for three‐way methods , 2004 .
[37] Rasmus Bro,et al. A comparison of algorithms for fitting the PARAFAC model , 2006, Comput. Stat. Data Anal..
[38] A. Stegeman,et al. On Kruskal's uniqueness condition for the Candecomp/Parafac decomposition , 2007 .
[39] Crystal J. Scott,et al. A Model-Based Approach for Visualizing the Dimensional Structure of Ordered Successive Categories Preference Data , 2008 .
[40] Wayne S. DeSarbo,et al. A Clusterwise Bilinear Multidimensional Scaling Methodology for Simultaneous Segmentation and Positioning Analyses , 2008 .
[41] M. Porter. The five competitive forces that shape strategy. , 2008, Harvard business review.
[42] Willem J. Heiser,et al. A Latent Class Multidimensional Scaling Model for Two-Way One-Mode Continuous Rating Dissimilarity Data , 2009 .
[43] Manuel E. Sosa,et al. Sus ingenieros hablan entre sí cuando deben hacerlo , 2008 .
[44] Y. Wind,et al. Product policy : concepts, methods, and strategy , 2010 .
[45] M. Vichi,et al. The K-INDSCAL Model for Heterogeneous Three-Way Dissimilarity Data , 2011, Psychometrika.
[46] W. DeSarbo,et al. A New Heterogeneous Multidimensional Unfolding Procedure , 2012 .
[47] Mary Jo Bitner,et al. Branded Service Encounters: Strategically Aligning Employee Behavior with the Brand Positioning , 2013 .
[48] Tam T. T. Lam,et al. Three-Mode Factor Analysis by Means of Candecomp/Parafac , 2013, Psychometrika.