Approximation and interpolation employing divergence-free radial basis functions with applications
暂无分享,去创建一个
[1] F. J. Narcowich,et al. Refined Error Estimates for Radial Basis Function Interpolation , 2003 .
[2] J. Duchon. Sur l’erreur d’interpolation des fonctions de plusieurs variables par les $D^m$-splines , 1978 .
[3] C. Micchelli. Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .
[4] V. Barbu. Elliptic Boundary Value Problems , 1998 .
[5] M. Buhmann. New Developments in the Theory of Radial Basis Function Interpolation , 1993 .
[6] Robert Schaback,et al. Error estimates and condition numbers for radial basis function interpolation , 1995, Adv. Comput. Math..
[7] C. R. Deboor,et al. A practical guide to splines , 1978 .
[8] S. Semmes. Topological Vector Spaces , 2003 .
[9] R. Franke. Scattered data interpolation: tests of some methods , 1982 .
[10] R. L. Hardy. Multiquadric equations of topography and other irregular surfaces , 1971 .
[11] E. Kansa. Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .
[12] F. J. Narcowich,et al. Norms of inverses and condition numbers for matrices associated with scattered data , 1991 .
[13] Kurt Jetter,et al. Error estimates for scattered data interpolation on spheres , 1999, Math. Comput..
[14] Jean Duchon,et al. Splines minimizing rotation-invariant semi-norms in Sobolev spaces , 1976, Constructive Theory of Functions of Several Variables.
[15] W. Madych,et al. Multivariate interpolation and condi-tionally positive definite functions , 1988 .
[16] Jean Duchon,et al. Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces , 1976 .