Programmable Molecular-Nanoparticle Multi-junction Networks for Logic Operations

We propose and investigate a nanoscale multi-junction network architecture that can be configured on-flight to perform Boolean logic functions at room temperature. The device exploits the electronic properties of randomly deposited molecule-interconnected metal nanoparticles, which act collectively as strongly nonlinear single-electron transistors. Disorder is being incorporated in the modeling of their electrical behavior and the collective response of interacting nano-components is being rationalized. The non-optimized energy consumption of the synaptic grid for a "then-if" logical computation is in the range of few aJ.

[1]  C. Dupas,et al.  Nanoscience : nanotechnologies and nanophysics , 2007 .

[2]  E. Ross Association , 1886, American Journal of Sociology.

[3]  George C Schatz,et al.  What controls the melting properties of DNA-linked gold nanoparticle assemblies? , 2000, Journal of the American Chemical Society.

[4]  J. Pfleger,et al.  Probing the localization of charge and the extent of disorder through electronic transport on Au nanoparticle–copper phthalocyanine multijunction networks , 2016 .

[5]  H. Jaeger,et al.  Sequential tunneling and inelastic cotunneling in nanoparticle arrays , 2008, 0805.3567.

[6]  J. Bourgoin Molecular Electronics: A Review of Metal-Molecule-Metal Junctions , 2001 .

[7]  N. L. Jarvis,et al.  Molecular Association and Monolayer Formation of Soluble Phthalocyanine Compounds. , 1984 .

[8]  R. Ramprasad,et al.  Intrinsic dielectric properties of phthalocyanine crystals: An ab initio investigation , 2007 .

[9]  A. Cossaro,et al.  Electronic states of CuPc chains on the Au(110) surface. , 2009, The Journal of chemical physics.

[10]  C. Choi,et al.  Electrochemical Behavior and Characterization of Polypyrrole-Copper Phthalocyanine Tetrasulfonate Thin Film: Cyclic Voltammetry and in Situ Raman Spectroscopic Investigation , 1990 .

[11]  Middleton,et al.  Collective transport in arrays of small metallic dots. , 1993, Physical review letters.

[12]  V. Nampoori,et al.  NIR to UV absorption spectra and the optical constants of phthalocyanines in glassy medium. , 2003, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[13]  D. Meisel,et al.  Adsorption and surface-enhanced Raman of dyes on silver and gold sols , 1982 .

[14]  Rainer Waser,et al.  Nanoelectronics and Information Technology , 2012 .

[15]  Celestine Preetham Lawrence,et al.  Evolution of a designless nanoparticle network into reconfigurable Boolean logic. , 2015, Nature nanotechnology.

[16]  L. Rollmann,et al.  Electrochemistry, electron paramagnetic resonance, and visible spectra of cobalt, nickel, copper, and metal-free phthalocyanines in dimethyl sulfoxide , 1968 .

[17]  Laszlo B. Kish,et al.  Noise-Based Logic and Computing: From Boolean Logic Gates to Brain Circuitry and Its Possible Hardware Realization , 2009, IWNC.

[18]  裕幸 飯田,et al.  International Technology Roadmap for Semiconductors 2003の要求清浄度について - シリコンウエハ表面と雰囲気環境に要求される清浄度, 分析方法の現状について - , 2004 .

[19]  Granular electronic systems , 2006, cond-mat/0603522.

[20]  A. Ichimiya,et al.  The Electrical Conductivity of Anthracene , 1964 .