Parameter identification for inflight detection and characterization of aircraft icing

Abstract Increasing interest in aircraft icing has motivated the proposal of a new ice management system that would provide inflight monitoring of ice accretion effects. Since these effects are manifested in the flight dynamics, parameter identification is a critical element of ice detection. In particular, identification must provide timely and accurate parameter estimates under normal operational input in the presence of disturbances and measurement noise. This paper evaluates a batch least-squares algorithm, an extended Kalman filter, and an H∞ algorithm in the context of icing detection. Simulation results show that only the H∞ method provides a timely and accurate icing indication.

[1]  Lennart Ljung,et al.  The Extended Kalman Filter as a Parameter Estimator for Linear Systems , 1979 .

[2]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[3]  Thomas P. Ratvasky,et al.  NASA/FAA Tailplane Icing Program Overview , 1999 .

[4]  Wayne Sand,et al.  Statistical study of aircraft icing accidents , 1991 .

[5]  Meir Pachter,et al.  System identification for adaptive and reconfigurable control , 1995 .

[6]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[7]  Michael B. Bragg,et al.  Aircraft aerodynamic effects due to large droplet ice accretions , 1996 .

[8]  Frank L. Lewis,et al.  Aircraft Control and Simulation , 1992 .

[9]  H. Vincent Poor,et al.  An Introduction to Signal Detection and Estimation , 1994, Springer Texts in Electrical Engineering.

[10]  R. J. Shaw,et al.  Ice shapes and the resulting drag increase for a NACA 0012 airfoil , 1984 .

[11]  Tamer Basar,et al.  Parameter identification for uncertain plants using H∞ methods , 1995, Autom..

[12]  S. Sastry,et al.  Adaptive Control: Stability, Convergence and Robustness , 1989 .

[13]  William R. Perkins,et al.  DETECTION AND CLASSIFICATION OF AIRCRAFT ICING USING NEURAL NETWORKS , 2000 .

[14]  T. Teichmann,et al.  Dynamics of Flight: Stability and Control , 1959 .

[15]  William R. Perkins,et al.  An Interdisciplinary Approach to Inflight Aircraft Icing Safety , 1998 .

[16]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[17]  Michael B. Bragg,et al.  Experimental Investigation of Simulated Large-Droplet Ice Shapes on Airfoil Aerodynamics , 1999 .

[18]  D. G. Ward,et al.  A self-designing receding horizon optimal flight controller , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[19]  Eugene A. Morelli,et al.  Nonlinear aerodynamic modeling using multivariate orthogonal functions , 1993 .

[20]  Karl Johan Åström,et al.  Adaptive Control , 1989, Embedded Digital Control with Microcontrollers.