Box splines

This chapter provides a brief introduction to box and half-box splines with particular focus on triangular splines and surface design. A particular example of box splines are the B-splines with equidistant knots. In general, box splines consist of regularly arranged polynomial pieces and they have a useful geometric interpretation. Namely they can be viewed as density functions of the shadows of higher dimensional boxes and half-boxes. Of particular interest for Geometric Design are box spline surfaces that consist of triangular polynomial pieces. These box spline surfaces have planar domains, but it is quite simple to construct arbitrary two-dimensional surfaces, i.e., manifolds, with these box splines.

[1]  I. J. Schoenberg Contributions to the problem of approximation of equidistant data by analytic functions. Part A. On the problem of smoothing or graduation. A first class of analytic approximation formulae , 1946 .

[2]  George Merrill Chaikin,et al.  An algorithm for high-speed curve generation , 1974, Comput. Graph. Image Process..

[3]  M. Sabin The use of piecewise forms for the numerical representation of shape , 1976 .

[4]  Richard F. Riesenfeld,et al.  A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Klaus Höllig,et al.  B-splines from parallelepipeds , 1982 .

[6]  Klaus Höllig,et al.  Recurrence Relations for Multivariate B-Splines. , 1982 .

[7]  Wolfgang Böhm Sudividing multivariate splines , 1983 .

[8]  Ronald A. DeVore,et al.  Approximation by smooth multivariate splines , 1983 .

[9]  Wolfgang Dahmen,et al.  Translates of multivarlate splines , 1983 .

[10]  Hartmut Prautzsch Unterteilungsalgorithmen für multivariate Splines, ein geometrischer Zugang , 1984 .

[11]  R. Jia Linear independence of translates of a box spline , 1984 .

[12]  Wolfgang Dahmen,et al.  Subdivision algorithms for the generation of box spline surfaces , 1984, Comput. Aided Geom. Des..

[13]  Wolfgang Böhm Calculating with box splines , 1984, Comput. Aided Geom. Des..

[14]  Richard F. Riesenfeld,et al.  Discrete box splines and refinement algorithms , 1984, Comput. Aided Geom. Des..

[15]  R. Jia Local linear independence of the translates of a box spline , 1985 .

[16]  Wolfgang Dahmen,et al.  Line average algorithm: A method for the computer generation of smooth surfaces , 1985, Comput. Aided Geom. Des..

[17]  Hartmut Prautzsch,et al.  Generalized subdivision and convergence , 1985, Comput. Aided Geom. Des..

[18]  Nira Dyn,et al.  On the convergence rates of subdivision algorithms for box spline surfaces , 1985 .

[19]  Hartmut Prautzsch The Location of the Control Points in the Case of Box Splines , 1986 .

[20]  Wolfgang Dahmen,et al.  Subdivision algorithms converge quadratically , 1986 .

[21]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[22]  Hartmut Prautzsch,et al.  On triangular splines , 1987 .

[23]  I. J. Schoenberg Contributions to the Problem of Approximation of Equidistant Data by Analytic Functions , 1988 .

[24]  Hartmut Prautzsch On convex Bézier triangles , 1992 .