Linking snowpack microphysics and albedo evolution

[1] Snow aging causes reflectance to vary significantly on timescales of days. This variability influences the strength of snow albedo feedback and can affect the timing of snowmelt. However, climate models have yet to incorporate important controls on snow aging and albedo evolution. We develop a physically based model that predicts evolution of dry, pure snow specific surface area, and apply aspherical ice particle theory to link these results with albedo evolution. This is the first theoretical study to quantify the relative roles of initial size distribution, vertical temperature gradient, and snow density in snow albedo evolution. Vapor diffusion caused by curvature differences causes rapid albedo decay in the first day following snowfall. Vertical temperature gradient generally dominates grain growth processes afterward but is modulated by snow density, irregularity in particle spacing, and temperature. These processes operate as a coupled system, which we uniquely represent without abrupt transitions between regimes. Model results agree very well with measurements of isothermal snow evolution and are within reasonable range of temperature gradient observations. We show that different snow state regimes cause albedo of nonmelting snow surfaces with identical initial albedo to vary by 0.12 or more after 14 days. Lack of quality observational data illuminates the need for well-controlled snow studies that simultaneously monitor specific surface area, temperature gradient, and albedo. Accounting for snow aging processes, especially temperature gradient, will improve understanding and assessment of snow albedo feedback and climate sensitivity. The modeling framework we develop will also be useful for air-snow chemistry studies that consider specific surface area.

[1]  D. Verseghy,et al.  Class—A Canadian land surface scheme for GCMS. I. Soil model , 2007 .

[2]  J. Dozier,et al.  Scanning electron microscopy of impurity structures in snow , 2007 .

[3]  V. Canuto,et al.  Present-Day Atmospheric Simulations Using GISS ModelE: Comparison to In Situ, Satellite, and Reanalysis Data , 2006 .

[4]  C. Zender,et al.  Snowpack radiative heating: Influence on Tibetan Plateau climate , 2005 .

[5]  Sergey A. Sokratov,et al.  Tomography of temperature gradient metamorphism of snow and associated changes in heat conductivity , 2004 .

[6]  Roberta Pirazzini,et al.  Surface albedo measurements over Antarctic sites in summer , 2004 .

[7]  T. Painter,et al.  Measurements of the hemispherical-directional reflectance of snow at fine spectral and angular resolution , 2004 .

[8]  F. Dominé,et al.  Grain growth theories and the isothermal evolution of the specific surface area of snow , 2004 .

[9]  J. Hansen,et al.  Soot climate forcing via snow and ice albedos. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Peter E. Thornton,et al.  Technical Description of the Community Land Model (CLM) , 2004 .

[11]  D. A. Miller,et al.  A microstructural approach to predict dry snow metamorphism in generalized thermal conditions , 2003 .

[12]  Teruo Aoki,et al.  Effects of snow physical parameters on shortwave broadband albedos , 2003 .

[13]  Thomas C. Grenfell,et al.  Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation: 2. Hexagonal columns and plates , 2003 .

[14]  The Capacitance of Rosette Ice Crystals , 2003 .

[15]  F. Dominé,et al.  Rate of evolution of the specific surface area of surface snow layers. , 2003, Environmental science & technology.

[16]  P. Bartelt,et al.  A physical SNOWPACK model for the Swiss avalanche warning: Part II. Snow microstructure , 2002 .

[17]  Paul B. Shepson,et al.  Air-Snow Interactions and Atmospheric Chemistry , 2002, Science.

[18]  D. A. Miller An integrated microstructural study of dry snow metamorphism under generalized thermal conditions , 2002 .

[19]  S. Solberg,et al.  Atmospheric Chemistry and Physics , 2002 .

[20]  S. Sokratov Parameters influencing the recrystallization rate of snow , 2001 .

[21]  R. L. Brown,et al.  Modeling the changes in microstructure of snow during metamorphism , 2001 .

[22]  Arun Kumar,et al.  Snow–Albedo Feedback and Seasonal Climate Variability over North America , 2001 .

[23]  M. Schneebeli,et al.  A model for kinetic grain growth , 2001, Annals of Glaciology.

[24]  S. Colbeck Sintering of unequal grains , 2001 .

[25]  Teruo Aoki,et al.  Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface , 2000 .

[26]  C. Fierz,et al.  Quantifying grain-shape changes in snow subjected to large temperature gradients , 2000, Annals of Glaciology.

[27]  Thomas C. Grenfell,et al.  Representation of a nonspherical ice particle by a collection of independent spheres for scattering , 1999 .

[28]  M. Williams,et al.  Sublimation from a seasonal snowpack at a continental, mid‐latitude alpine site , 1999 .

[29]  A. Sato,et al.  Temperature and temperature gradient dependence of snow recrystallization in depth hoar snow , 1999 .

[30]  H. Graf,et al.  Modeling the snow cover in climate studies: 1. Long‐term integrations under different climatic conditions using a multilayered snow‐cover model , 1998 .

[31]  M. Sturm,et al.  Vapor transport, grain growth and depth-hoar development in the subarctic snow , 1997, Journal of Glaciology.

[32]  F. Maytag Evolution , 1996, Arch. Mus. Informatics.

[33]  J. Schneibel,et al.  The sintering of two particles by surface and grain boundary diffusion -- A two-dimensional numerical study , 1995 .

[34]  S. Colbeck,et al.  Geometry of heat and mass transfer in dry snow: A review of theory and experiment , 1995 .

[35]  H. Douville,et al.  A new snow parameterization for the Météo-France climate model , 1995 .

[36]  Jean-François Mahfouf,et al.  A new snow parameterization for the Météo-France climate model , 1995 .

[37]  S. Warren,et al.  Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near‐infrared wavelengths , 1994 .

[38]  R. Oglesby,et al.  An improved snow hydrology for GCMs. Part 1: snow cover fraction, albedo, grain size, and age , 1994 .

[39]  R. Oglesby,et al.  An improved snow hydrology for GCMs. Part 1: snow cover fraction, albedo, grain size, and age , 1994 .

[40]  Eizi Akitaya,et al.  Depth-hoar crystal growth in the surface layer under high temperature gradient , 1993, Annals of Glaciology.

[41]  S. Colbeck The vapor diffusion coefficient for snow , 1993 .

[42]  D. Verseghy,et al.  CLASS-A Canadian Land Surface Scheme for GCMs , 1993 .

[43]  R. Jordan A One-dimensional temperature model for a snow cover : technical documentation for SNTHERM.89 , 1991 .

[44]  C. McKay,et al.  Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres , 1989 .

[45]  J. Dozier Spectral Signature of Alpine Snow Cover from the Landsat Thematic Mapper , 1989 .

[46]  S. Marshall a Physical Parameterization of Snow Albedo for Use in Climate Models. , 1989 .

[47]  E. Brun Investigation on Wet-Snow Metamorphism in Respect of Liquid-Water Content , 1989, Annals of Glaciology.

[48]  H. Gubler Model for dry snow metamorphism by interparticle vapor flux , 1985 .

[49]  A. Henderson‐sellers,et al.  The Diurnal Hysteresis of Snow Albedo , 1985, Journal of Glaciology.

[50]  S. Colbeck,et al.  Theory of metamorphism of dry snow , 1983 .

[51]  S. Colbeck Ice crystal morphology and growth rates at low supersaturations and high temperatures , 1983 .

[52]  C. W. Hanson Second Symposium on Applied Glaciology: Opening Comments , 1983, Annals of Glaciology.

[53]  R. L. Brown,et al.  Metamorphism of Dry Snow as a Result of Temperature Gradient and Vapor Density Differences , 1983, Annals of Glaciology.

[54]  R. Sommerfeld,et al.  A Branch Grain Theory of Temperature Gradient Metamorphism , 1983 .

[55]  Edward E. Adams,et al.  A model for crystal development in dry snow , 1982 .

[56]  S. Warren,et al.  A Model for the Spectral Albedo of Snow. I: Pure Snow , 1980 .

[57]  S. Warren,et al.  A Model for the Spectral Albedo of Snow. II: Snow Containing Atmospheric Aerosols , 1980 .

[58]  J. Pollack,et al.  Scattering by nonspherical particles of size comparable to wavelength - A new semi-empirical theory and its application to tropospheric aerosols , 1980 .

[59]  J. Klett,et al.  Microphysics of Clouds and Precipitation , 1978, Nature.

[60]  S. Colbeck Thermodynamics of snow metamorphism due to variations in curvature , 1980, Journal of Glaciology.

[61]  D. Marbouty An Experimental Study of Temperature-Gradient Metamorphism , 1980, Journal of Glaciology.

[62]  L. R. Koenig,et al.  A Short Course in Cloud Physics , 1979 .

[63]  R. Rogers,et al.  A short course in cloud physics , 1976 .

[64]  Eizi Akitaya Studies on Depth Hoar , 1974 .

[65]  M. Budyko The effect of solar radiation variations on the climate of the Earth , 1969 .

[66]  F. Bryant,et al.  Optical efficiencies of large particles of arbitrary shape and orientation , 1969 .

[67]  P. Stephenson Some Considerations of Snow Metamorphism in the Antarctic Ice Sheet in the Light of Ice Crystal Studies , 1967 .

[68]  J. Giddings,et al.  The formation rate of depth hoar , 1962 .