The structures of state space concerning Quantum Dynamical Semigroups

Each semigroup describing the time evolution of an open quantum system on a finite dimensional Hilbert space is related to a special structure of this space. It is shown how the space can be decomposed into subspaces: One is related to decay, orthogonal subspaces support the stationary states. Specialities where the complete positivity of evolutions is actually needed for analysis, mainly for evolution of coherence, are highlighted. Decompositions are done the same way for evolutions in discrete as in continuous time, but evolutions may show differences, only for discrete semigroups there may appear cases of sudden decay and of perpetual oscillation. Concluding the analysis we identify the relation of the state space structure to the processes of Decay, Decoherence, Dissipation and Dephasing.

[1]  C. Pillet,et al.  Non-Equilibrium Steady States of Finite¶Quantum Systems Coupled to Thermal Reservoirs , 2002 .

[2]  E. Davies,et al.  Markovian master equations , 1974 .

[3]  K. Kraus General state changes in quantum theory , 1971 .

[4]  B. Baumgartner Interchannel resonances at a threshold , 1996 .

[5]  R. Alicki General Theory and Applications to Unstable Particles , 2007 .

[6]  On the assumption of initial factorization in the master equation for weakly coupled systems I: General framework , 2006, quant-ph/0602184.

[7]  Nicolas Gisin,et al.  Open system dynamics with non-markovian quantum trajectories , 1999 .

[8]  H. Primas Pattern recognition in molecular quantum mechanics , 1975 .

[9]  S. Nakajima On Quantum Theory of Transport Phenomena Steady Diffusion , 1958 .

[10]  Vojkan Jaksic,et al.  Topics in nonequilibrium quantum statistical mechanics , 2006 .

[11]  A. Frigerio,et al.  Stationary states of quantum dynamical semigroups , 1978 .

[12]  J. Fröhlich,et al.  Return to equilibrium , 2000 .

[13]  Decoherence and thermalization. , 2006, Physical review letters.

[14]  On the Nature of Fermi Golden Rule for Open Quantum Systems , 2004 .

[15]  E. Davies Generators of dynamical semigroups , 1979 .

[16]  A. Jensen,et al.  Perturbation of near threshold eigenvalues: Crossover from exponential to non-exponential decay laws , 2011 .

[17]  J. Fröhlich,et al.  Spectral Analysis for Systems of Atoms and Molecules Coupled to the Quantized Radiation Field , 1999 .

[18]  S. Nakajima,et al.  On Quantum Theory of Transport Phenomena , 1959 .

[19]  Franco Fagnola,et al.  Notes on the Qualitative Behaviour of Quantum Markov Semigroups , 2006 .

[20]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[21]  Mark Fannes,et al.  Quantum Dynamical Systems , 2001 .

[22]  S. G. Schirmer,et al.  Stabilizing open quantum systems by Markovian reservoir engineering , 2009, 0909.1596.

[23]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[24]  Return to Thermal Equilibrium , 2007 .

[25]  M. Merkli,et al.  A Time-Dependent Theory of Quantum Resonances , 1999 .

[26]  David N. Williams Difficulty with a kinematic concept of unstable particles: the SZ.-Nagy extension and the Matthews-Salam-Zwanziger representation , 1971 .

[27]  R. Zwanzig Ensemble Method in the Theory of Irreversibility , 1960 .

[28]  John Calsamiglia,et al.  Adiabatic markovian dynamics. , 2010, Physical review letters.

[29]  R. Olkiewicz Decoherence scenarios in the algebraic framework , 2008 .

[30]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[31]  L. Hove,et al.  Quantum-mechanical perturbations giving rise to a statistical transport equation , 1954 .

[32]  Elements of Operator Algebras and Modular Theory , 2006 .

[33]  F. Haake,et al.  Universality of decoherence. , 2000, Physical review letters.

[34]  J. Froehlich,et al.  Spectral Renormalization Group and Local Decay in the Standard Model of Non-Relativistic Quantum Electrodynamics , 2009, 0904.1014.

[35]  M. Schlosshauer Decoherence, the measurement problem, and interpretations of quantum mechanics , 2003, quant-ph/0312059.

[36]  Viola,et al.  Theory of quantum error correction for general noise , 2000, Physical review letters.

[37]  A. Soffer,et al.  Time Dependent Resonance Theory , 1998 .

[38]  Herbert Spohn,et al.  Irreversible Thermodynamics for Quantum Systems Weakly Coupled to Thermal Reservoirs , 2007 .

[39]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[40]  B. Baumgartner,et al.  Analysis of quantum semigroups with GKS–Lindblad generators: I. Simple generators , 2007, 0710.5385.

[41]  Sophie Shermer Stabilizing open quantum systems by Markovian reservoir engineering , 2010 .

[42]  H. Spohn Kinetic equations from Hamiltonian dynamics: Markovian limits , 1980 .

[43]  On the weak-coupling limit and complete positivity , 2000, quant-ph/0002062.

[44]  B. Baumgartner,et al.  Analysis of quantum semigroups with GKS–Lindblad generators: II. General , 2008, 0806.3164.

[45]  R. Kadison A Generalized Schwarz Inequality and Algebraic Invariants for Operator Algebras , 1952 .

[46]  A General Resonance Theory Based on Mourre’s Inequality , 2005, math-ph/0507063.

[47]  E. Davies,et al.  Markovian master equations. II , 1976 .

[48]  V. Giovannetti,et al.  The generalized Lyapunov theorem and its application to quantum channels , 2006, quant-ph/0605197.

[49]  O. Penrose Foundations of statistical mechanics , 1969 .

[50]  G. Lindblad,et al.  Fermi’s Golden Rule and Exponential Decay as a RG Fixed Point , 2008, 0805.0502.

[51]  V. Jaksic,et al.  Return to Equilibrium for Pauli-Fierz Systems , 2003 .

[52]  P. Blanchard,et al.  DECOHERENCE INDUCED TRANSITION FROM QUANTUM TO CLASSICAL DYNAMICS , 2003 .

[53]  A. Frigerio Quantum dynamical semigroups and approach to equilibrium , 1977 .

[54]  M. Sentís Quantum theory of open systems , 2002 .

[55]  V. Umanità,et al.  Decoherence for positive semigroups on M2(C) , 2011 .

[56]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .