Vincent’s theorem of 1836: overview and future research
暂无分享,去创建一个
[1] T. A. Brown,et al. Theory of Equations. , 1950, The Mathematical Gazette.
[2] Doru Stefanescu,et al. New Bounds for Positive Roots of Polynomials , 2005, J. Univers. Comput. Sci..
[3] David G. Cantor,et al. A continued fraction algorithm for real algebraic numbers , 1972 .
[4] Vikram Sharma. Complexity of real root isolation using continued fractions , 2008, Theor. Comput. Sci..
[5] Alkiviadis G. Akritas,et al. There is no “Uspensky's method.” , 1986, SYMSAC '86.
[6] A. Ostrowski. Note on Vincent's Theorem , 1950 .
[7] Hoon Hong,et al. Bounds for Absolute Positiveness of Multivariate Polynomials , 1998, J. Symb. Comput..
[8] Alkiviadis G. Akritas,et al. Advances on the Continued Fractions Method Using Better Estimations of Positive Root Bounds , 2007, CASC.
[9] P. Zimmermann,et al. Efficient isolation of polynomial's real roots , 2004 .
[10] A. Strzebonski,et al. On the Various Bisection Methods Derived from Vincent’s Theorem , 2008, Serdica Journal of Computing.
[11] Chee-Keng Yap,et al. Complexity Analysis of Algorithms in Algebraic Computation , 2006 .
[12] E. Keith Lloyd. On the forgotten Mr. Vincent , 1979 .
[13] Chee-Keng Yap,et al. Fundamental problems of algorithmic algebra , 1999 .
[14] Alkiviadis G. Akritas,et al. A Comparative Study of Two Real Root Isolation Methods , 2005 .
[15] N. Obreshkov. Verteilung und Berechnung der Nullstellen reeller Polynome , 1963 .
[16] Alkiviadis G. Akritas,et al. Polynomial real root isolation using Descarte's rule of signs , 1976, SYMSAC '76.
[17] Alkiviadis G. Akritas,et al. Implementations of a New Theorem for Computing Bounds for Positive Roots of Polynomials , 2006, Computing.
[18] Alkiviadis G. Akritas,et al. On the forgotten theorem of Mr. Vincent , 1978 .
[19] Alkiviadis G. Akritas. Reflections on a Pair of Theorems by Budan and Fourier , 1982 .
[20] Alkiviadis G. Akritas,et al. Elements of Computer Algebra with Applications , 1989 .
[21] Alkiviadis G. Akritas,et al. A Comparison of Various Methods for Computing Bounds for Positive Roots of Polynomials , 2007, J. Univers. Comput. Sci..
[22] Alkiviadis G. Akritas,et al. Improving the Performance of the Continued Fractions Method Using New Bounds of Positive Roots , 2008 .
[23] J. Serret. Cours d'Algebre superieure , 1885 .
[24] Camille Jordan. Mémoire sur la résolution algébrique des équations. , 1867 .
[25] A. Strzebonski,et al. FLQ, the Fastest Quadratic Complexity Bound on the Values of Positive Roots of Polynomials , 2008, Serdica Journal of Computing.
[26] Alkiviadis G. Akritas,et al. The fastest exact algorithms for the isolation of the real roots of a polynomial equation , 1980, Computing.
[27] Ioannis Z. Emiris,et al. Univariate Polynomial Real Root Isolation: Continued Fractions Revisited , 2006, ESA.
[28] J B Kiostelikis,et al. Bounds for positive roots of polynomials , 1986 .
[29] Alkiviadis G. Akritas,et al. An implementation of Vincent's theorem , 1980 .
[30] Doru Stefanescu,et al. Bounds for Real Roots and Applications to Orthogonal Polynomials , 2007, CASC.
[31] L. Zoretti. Sur la résolution des équations numériques , 1909 .
[32] Alkiviadis G. Akritas,et al. Exact algorithms for polynomial real root approximation using continued fractions , 1983, Computing.
[33] Alkiviadis G. Akritas,et al. Linear and Quadratic Complexity Bounds on the Values of the Positive Roots of Polynomials , 2009, J. Univers. Comput. Sci..
[34] N. S. Barnett,et al. Private communication , 1969 .
[35] Joachim von zur Gathen,et al. Fast algorithms for Taylor shifts and certain difference equations , 1997, ISSAC.
[36] Alfred J. van der Poorten,et al. Continued Fractions of Algebraic Numbers , 1995 .