Vincent’s theorem of 1836: overview and future research

In this paper, we present two different versions of Vincent’s theorem of 1836 and discuss various real root isolation methods derived from them: one using continued fractions and two using bisections, the former being the fastest real root isolation method. Regarding the continued fractions method, we first show how, using a recently developed quadratic complexity bound on the values of the positive roots of polynomials, its performance has been improved by an average of 40% over its initial implementation, and then we indicate directions for future research. Bibliography: 45 titles.

[1]  T. A. Brown,et al.  Theory of Equations. , 1950, The Mathematical Gazette.

[2]  Doru Stefanescu,et al.  New Bounds for Positive Roots of Polynomials , 2005, J. Univers. Comput. Sci..

[3]  David G. Cantor,et al.  A continued fraction algorithm for real algebraic numbers , 1972 .

[4]  Vikram Sharma Complexity of real root isolation using continued fractions , 2008, Theor. Comput. Sci..

[5]  Alkiviadis G. Akritas,et al.  There is no “Uspensky's method.” , 1986, SYMSAC '86.

[6]  A. Ostrowski Note on Vincent's Theorem , 1950 .

[7]  Hoon Hong,et al.  Bounds for Absolute Positiveness of Multivariate Polynomials , 1998, J. Symb. Comput..

[8]  Alkiviadis G. Akritas,et al.  Advances on the Continued Fractions Method Using Better Estimations of Positive Root Bounds , 2007, CASC.

[9]  P. Zimmermann,et al.  Efficient isolation of polynomial's real roots , 2004 .

[10]  A. Strzebonski,et al.  On the Various Bisection Methods Derived from Vincent’s Theorem , 2008, Serdica Journal of Computing.

[11]  Chee-Keng Yap,et al.  Complexity Analysis of Algorithms in Algebraic Computation , 2006 .

[12]  E. Keith Lloyd On the forgotten Mr. Vincent , 1979 .

[13]  Chee-Keng Yap,et al.  Fundamental problems of algorithmic algebra , 1999 .

[14]  Alkiviadis G. Akritas,et al.  A Comparative Study of Two Real Root Isolation Methods , 2005 .

[15]  N. Obreshkov Verteilung und Berechnung der Nullstellen reeller Polynome , 1963 .

[16]  Alkiviadis G. Akritas,et al.  Polynomial real root isolation using Descarte's rule of signs , 1976, SYMSAC '76.

[17]  Alkiviadis G. Akritas,et al.  Implementations of a New Theorem for Computing Bounds for Positive Roots of Polynomials , 2006, Computing.

[18]  Alkiviadis G. Akritas,et al.  On the forgotten theorem of Mr. Vincent , 1978 .

[19]  Alkiviadis G. Akritas Reflections on a Pair of Theorems by Budan and Fourier , 1982 .

[20]  Alkiviadis G. Akritas,et al.  Elements of Computer Algebra with Applications , 1989 .

[21]  Alkiviadis G. Akritas,et al.  A Comparison of Various Methods for Computing Bounds for Positive Roots of Polynomials , 2007, J. Univers. Comput. Sci..

[22]  Alkiviadis G. Akritas,et al.  Improving the Performance of the Continued Fractions Method Using New Bounds of Positive Roots , 2008 .

[23]  J. Serret Cours d'Algebre superieure , 1885 .

[24]  Camille Jordan Mémoire sur la résolution algébrique des équations. , 1867 .

[25]  A. Strzebonski,et al.  FLQ, the Fastest Quadratic Complexity Bound on the Values of Positive Roots of Polynomials , 2008, Serdica Journal of Computing.

[26]  Alkiviadis G. Akritas,et al.  The fastest exact algorithms for the isolation of the real roots of a polynomial equation , 1980, Computing.

[27]  Ioannis Z. Emiris,et al.  Univariate Polynomial Real Root Isolation: Continued Fractions Revisited , 2006, ESA.

[28]  J B Kiostelikis,et al.  Bounds for positive roots of polynomials , 1986 .

[29]  Alkiviadis G. Akritas,et al.  An implementation of Vincent's theorem , 1980 .

[30]  Doru Stefanescu,et al.  Bounds for Real Roots and Applications to Orthogonal Polynomials , 2007, CASC.

[31]  L. Zoretti Sur la résolution des équations numériques , 1909 .

[32]  Alkiviadis G. Akritas,et al.  Exact algorithms for polynomial real root approximation using continued fractions , 1983, Computing.

[33]  Alkiviadis G. Akritas,et al.  Linear and Quadratic Complexity Bounds on the Values of the Positive Roots of Polynomials , 2009, J. Univers. Comput. Sci..

[34]  N. S. Barnett,et al.  Private communication , 1969 .

[35]  Joachim von zur Gathen,et al.  Fast algorithms for Taylor shifts and certain difference equations , 1997, ISSAC.

[36]  Alfred J. van der Poorten,et al.  Continued Fractions of Algebraic Numbers , 1995 .