High-throughput analysis of the transcriptional patterns of sexual genes in malaria

[1]  D. Patel,et al.  The transcriptional regulator HDP1 controls expansion of the inner membrane complex during early sexual differentiation of malaria parasites , 2021, Nature Microbiology.

[2]  Zbynek Bozdech,et al.  Stochastic expression of invasion genes in Plasmodium falciparum schizonts , 2021, Nature Communications.

[3]  Nicolas M. B. Brancucci,et al.  Revisiting the Effect of Pharmaceuticals on Transmission Stage Formation in the Malaria Parasite Plasmodium falciparum , 2021, bioRxiv.

[4]  P. E. Van den Steen,et al.  Etiology of lactic acidosis in malaria , 2021, PLoS pathogens.

[5]  J. McCarthy,et al.  The transcriptome of circulating sexually committed Plasmodium falciparum ring stage parasites forecasts malaria transmission potential , 2020, Nature Communications.

[6]  A. Rosanas-Urgell,et al.  Artemisinin exposure at the ring or trophozoite stage impacts Plasmodium falciparum sexual conversion differently , 2020, eLife.

[7]  D. Sullivan,et al.  Lactic Acid Supplementation Increases Quantity and Quality of Gametocytes in Plasmodium falciparum Culture , 2020, Infection and Immunity.

[8]  Zbynek Bozdech,et al.  A comprehensive RNA handling and transcriptomics guide for high-throughput processing of Plasmodium blood-stage samples , 2020, Malaria journal.

[9]  J. Baum,et al.  Conditional expression of PfAP2-G for controlled massive sexual conversion in Plasmodium falciparum , 2020, Science Advances.

[10]  M. Llinás,et al.  Dissecting the role of PfAP2-G in malaria gametocytogenesis , 2020, Nature Communications.

[11]  A. Flieger,et al.  A patatin‐like phospholipase functions during gametocyte induction in the malaria parasite Plasmodium falciparum , 2019, Cellular microbiology.

[12]  A. Rosanas-Urgell,et al.  Reporter lines based on the gexp02 promoter enable early quantification of sexual conversion rates in the malaria parasite Plasmodium falciparum , 2019, Scientific Reports.

[13]  K. Williamson,et al.  Plasmodium falciparum sexual differentiation in malaria patients is associated with host factors and GDV1-dependent genes , 2019, Nature Communications.

[14]  M. Llinás,et al.  Hierarchical transcriptional control regulates Plasmodium falciparum sexual differentiation , 2019, BMC Genomics.

[15]  L. H. Carvalho,et al.  Ribosomal and non-ribosomal PCR targets for the detection of low-density and mixed malaria infections , 2019, Malaria journal.

[16]  E. Cantor,et al.  A Practical Guide to Analyzing Nucleic Acid Concentration and Purity with Microvolume Spectrophotometers , 2019 .

[17]  O. Elemento,et al.  Revisiting the initial steps of sexual development in the malaria parasite Plasmodium falciparum , 2018, Nature Microbiology.

[18]  Choukri Ben Mamoun,et al.  Role of phospholipid synthesis in the development and differentiation of malaria parasites in the blood , 2018, The Journal of Biological Chemistry.

[19]  M. Llinás,et al.  Regulation of Sexual Commitment and Gametocytogenesis in Malaria Parasites. , 2018, Annual review of microbiology.

[20]  U. Tatu,et al.  Commit, hide and escape: the story of Plasmodium gametocytes , 2018, Parasitology.

[21]  E. Ashley,et al.  Malaria , 2018, The Lancet.

[22]  P. Jenoe,et al.  GDV1 induces sexual commitment of malaria parasites by antagonizing HP1-dependent gene silencing , 2018, Science.

[23]  Zbynek Bozdech,et al.  Comparative Heterochromatin Profiling Reveals Conserved and Unique Epigenome Signatures Linked to Adaptation and Development of Malaria Parasites , 2018, Cell host & microbe.

[24]  D. Wirth,et al.  Lysophosphatidylcholine Regulates Sexual Stage Differentiation in the Human Malaria Parasite Plasmodium falciparum , 2017, Cell.

[25]  Lesley Cheng,et al.  Malaria parasite DNA-harbouring vesicles activate cytosolic immune sensors , 2017, Nature Communications.

[26]  O. Elemento,et al.  Single-cell RNA sequencing reveals a signature of sexual commitment in malaria parasites , 2017, Nature.

[27]  P. Bangirana,et al.  Cerebrospinal fluid kynurenine and kynurenic acid concentrations are associated with coma duration and long-term neurocognitive impairment in Ugandan children with cerebral malaria , 2017, Malaria Journal.

[28]  P. Bangirana,et al.  Cerebrospinal fluid kynurenine and kynurenic acid concentrations are associated with coma duration and long-term neurocognitive impairment in Ugandan children with cerebral malaria , 2017, Malaria Journal.

[29]  T. Bousema,et al.  Molecular Markers for Sensitive Detection of Plasmodium falciparum Asexual Stage Parasites and their Application in a Malaria Clinical Trial , 2017, The American journal of tropical medicine and hygiene.

[30]  U. Tatu,et al.  A disrupted transsulphuration pathway results in accumulation of redox metabolites and induction of gametocytogenesis in malaria , 2017, Scientific Reports.

[31]  J. Rayner,et al.  Extreme mutation bias and high AT content in Plasmodium falciparum , 2016, Nucleic acids research.

[32]  Z. Porat,et al.  Identification and classification of the malaria parasite blood developmental stages, using imaging flow cytometry. , 2017, Methods.

[33]  M. Mushtaq,et al.  A PCR method based on 18S rRNA gene for detection of malaria parasite in Balochistan. , 2016, JPMA. The Journal of the Pakistan Medical Association.

[34]  R. Sinden,et al.  Routine in vitro culture of P. falciparum gametocytes to evaluate novel transmission-blocking interventions , 2016, Nature Protocols.

[35]  G. Pradel,et al.  The development of malaria parasites in the mosquito midgut , 2016, Cellular microbiology.

[36]  WWARN Gametocyte Study Group,et al.  Gametocyte carriage in uncomplicated Plasmodium falciparum malaria following treatment with artemisinin combination therapy: a systematic review and meta-analysis of individual patient data , 2016, BMC Medicine.

[37]  L. Tilley,et al.  Specific expression and export of the Plasmodium falciparum Gametocyte EXported Protein-5 marks the gametocyte ring stage , 2015, Malaria Journal.

[38]  M. Llinás,et al.  Sexual development in Plasmodium parasites: knowing when it's time to commit , 2015, Nature Reviews Microbiology.

[39]  Matthias Marti,et al.  An assay to probe Plasmodium falciparum growth, transmission stage formation and early gametocyte development , 2015, Nature Protocols.

[40]  Manas Kotepui,et al.  Effects of Malaria Parasite Density on Blood Cell Parameters , 2015, PloS one.

[41]  V. Singh,et al.  A study of serum lactate level in malaria and its correlation with severity of disease , 2015 .

[42]  Zbynek Bozdech,et al.  Heterochromatin protein 1 secures survival and transmission of malaria parasites. , 2014, Cell host & microbe.

[43]  Bradley I. Coleman,et al.  A Plasmodium falciparum histone deacetylase regulates antigenic variation and gametocyte conversion. , 2014, Cell host & microbe.

[44]  D. Kwiatkowski,et al.  A transcriptional switch underlies commitment to sexual development in human malaria parasites , 2014, Nature.

[45]  Ellen Bushell,et al.  A cascade of DNA binding proteins for sexual commitment and development in Plasmodium , 2014, Nature.

[46]  Manuel Llinás,et al.  A transcriptional switch underlies commitment to sexual development in malaria parasites , 2014 .

[47]  Danny W. Wilson,et al.  Defining the Timing of Action of Antimalarial Drugs against Plasmodium falciparum , 2013, Antimicrobial Agents and Chemotherapy.

[48]  Timothy G. Myers,et al.  Plasmodium falciparum Gametocyte Development 1 (Pfgdv1) and Gametocytogenesis Early Gene Identification and Commitment to Sexual Development , 2012, PLoS pathogens.

[49]  D. Leroy,et al.  Comparison and Optimization of Different Methods for the In Vitro Production of Plasmodium falciparum Gametocytes , 2012, Journal of parasitology research.

[50]  Kami Kim Malaria var gene expression: keeping up with the neighbors. , 2012, Cell host & microbe.

[51]  L. Cui,et al.  Gametocytogenesis in malaria parasite: commitment, development and regulation. , 2011, Future microbiology.

[52]  K. Williamson,et al.  A High-Throughput Screen Targeting Malaria Transmission Stages Opens New Avenues for Drug Development , 2011, The Journal of infectious diseases.

[53]  M. Ares,et al.  Nondenaturing agarose gel electrophoresis of RNA. , 2010, Cold Spring Harbor protocols.

[54]  Edwin Lasonder,et al.  Protein Export Marks the Early Phase of Gametocytogenesis of the Human Malaria Parasite Plasmodium falciparum* , 2010, Molecular & Cellular Proteomics.

[55]  Samuel A. Assefa,et al.  New insights into the blood-stage transcriptome of Plasmodium falciparum using RNA-Seq , 2010, Molecular microbiology.

[56]  J. McCarthy,et al.  Effect of antimalarial drugs on Plasmodium falciparum gametocytes. , 2009, The Journal of infectious diseases.

[57]  Blaise T. F. Alako,et al.  Plasmodium falciparum Heterochromatin Protein 1 Marks Genomic Loci Linked to Phenotypic Variation of Exported Virulence Factors , 2009, PLoS pathogens.

[58]  V. Beneš,et al.  The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. , 2009, Clinical chemistry.

[59]  Jose-Juan Lopez-Rubio,et al.  Genome-wide analysis of heterochromatin associates clonally variant gene regulation with perinuclear repressive centers in malaria parasites. , 2009, Cell host & microbe.

[60]  M. Dixon,et al.  A green fluorescent protein-based assay for determining gametocyte production in Plasmodium falciparum. , 2009, Molecular and biochemical parasitology.

[61]  Yingyao Zhou,et al.  A systematic approach to understand the mechanism of action of the bisthiazolium compound T4 on the human malaria parasite, Plasmodium falciparum , 2008, BMC Genomics.

[62]  G. Pessi,et al.  Disruption of the Plasmodium falciparum PfPMT Gene Results in a Complete Loss of Phosphatidylcholine Biosynthesis via the Serine-Decarboxylase-Phosphoethanolamine-Methyltransferase Pathway and Severe Growth and Survival Defects* , 2008, Journal of Biological Chemistry.

[63]  A. Regev,et al.  Distinct physiological states of Plasmodium falciparum in malaria-infected patients , 2007, Nature.

[64]  S. Sharp,et al.  Improved synchronous production of Plasmodium falciparum gametocytes in vitro. , 2007, Molecular and biochemical parasitology.

[65]  Tania Nolan,et al.  SPUD: a quantitative PCR assay for the detection of inhibitors in nucleic acid preparations. , 2006, Analytical biochemistry.

[66]  P. V. van Genderen,et al.  Evaluation of plasma lactate as a parameter for disease severity on admission in travelers with Plasmodium falciparum malaria. , 2006, Journal of travel medicine.

[67]  Thomas Ragg,et al.  The RIN: an RNA integrity number for assigning integrity values to RNA measurements , 2006, BMC Molecular Biology.

[68]  X. Su,et al.  Identification of a subtelomeric gene family expressed during the asexual-sexual stage transition in Plasmodium falciparum. , 2005, Molecular and biochemical parasitology (Print).

[69]  A. Sowunmi,et al.  Risk factors for gametocyte carriage in uncomplicated falciparum malaria in children , 2004, Parasitology.

[70]  A. Talman,et al.  Gametocytogenesis : the puberty of Plasmodium falciparum , 2004, Malaria Journal.

[71]  T. Taylor,et al.  Metabolites of the kynurenine pathway of tryptophan metabolism in the cerebrospinal fluid of Malawian children with malaria. , 2003, The Journal of infectious diseases.

[72]  J. Derisi,et al.  The Transcriptome of the Intraerythrocytic Developmental Cycle of Plasmodium falciparum , 2003, PLoS biology.

[73]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[74]  T. Voss,et al.  Extraction and purification of Plasmodium total RNA. , 2002, Methods in molecular medicine.

[75]  A. Buckling,et al.  Chloroquine increases Plasmodium falciparum gametocytogenesis in vitro , 1999, Parasitology.

[76]  R. Carter,et al.  Detection of low level Plasmodium falciparum gametocytes using reverse transcriptase polymerase chain reaction. , 1999, Molecular and biochemical parasitology.

[77]  R. Rosenberg,et al.  Xanthurenic Acid Induces Gametogenesis in Plasmodium, the Malaria Parasite* , 1998, The Journal of Biological Chemistry.

[78]  J. Glasel Validity of nucleic acid purities monitored by 260nm/280nm absorbance ratios. , 1995, BioTechniques.

[79]  R. N. Carter,et al.  Cellular location and temporal expression of the Plasmodium falciparum sexual stage antigen Pfs16. , 1994, Molecular and biochemical parasitology.

[80]  W. Trager,et al.  Enhanced gametocyte formation in young erythrocytes by Plasmodium falciparum in vitro. , 1992, The Journal of protozoology.

[81]  R. Carter,et al.  Plasmodium falciparum: an abundant stage-specific protein expressed during early gametocyte development. , 1989, Experimental parasitology.

[82]  P. Chomczyński,et al.  Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. , 1987, Analytical biochemistry.

[83]  R. Slater Agarose Gel Electrophoresis of RNA , 1986 .

[84]  R. Reese,et al.  Protein and nucleic acid synthesis during synchronized growth of Plasmodium falciparum , 1984, Journal of bacteriology.

[85]  C. Lambros,et al.  Synchronization of Plasmodium falciparum erythrocytic stages in culture. , 1979, The Journal of parasitology.

[86]  W. Trager,et al.  Human malaria parasites in continuous culture. , 1976, Science.