Hybrid integration of GaAs quantum cascade lasers with Si substrates by thermocompression bonding

A hybrid GaAs quantum cascade laser system obtained by Au–Au thermocompression bonding epilayer down onto gold coated silicon substrates is presented in this paper. The performance of the hybrid laser in low-duty-cycle pulsed operation in comparison to an unbonded one was not deteriorated. The lasers run with a threshold of 4.6kA∕cm2, emit around 12μm, and with a maximum optical output power of 550mW at cryogenic temperatures. The key advantage of such hybrid chips is the possibility of integrating III-V cascade lasers with established silicon photonics technology, such as silicon-on-insulator waveguides, V-groove fiber coupling and microfluidics.

[1]  M. Schmidt Wafer-to-wafer bonding for microstructure formation , 1998, Proc. IEEE.

[2]  Christian Pflugl,et al.  Intra-cavity absorption spectroscopy with narrow-ridge microfluidic quantum cascade lasers. , 2007, Optics express.

[3]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[4]  Inspec Properties of gallium arsenide , 1986 .

[5]  M. Paniccia,et al.  A continuous-wave Raman silicon laser , 2005, Nature.

[6]  Hemispherical semi-insulating GaAs double-frequency absorption photodetector operating at 1.3μm wavelength , 2007 .

[7]  A. Kosterev,et al.  Chemical sensors based on quantum cascade lasers , 2002 .

[8]  The temperature-dependent spectral properties of filter substrate materials in the far-infrared (6–40 μm) , 2004 .

[9]  F. Capasso,et al.  Recent progress in quantum cascade lasers and applications , 2001 .

[10]  B. Mizaikoff,et al.  Infrared optical sensors for water quality monitoring. , 2003, Water science and technology : a journal of the International Association on Water Pollution Research.

[11]  M. Schmidt,et al.  Characterization of wafer-level thermocompression bonds , 2004, Journal of Microelectromechanical Systems.

[12]  Luke R. Wilson,et al.  InGaAs∕AlAsSb∕InP quantum cascade lasers operating at wavelengths close to 3μm , 2007 .

[13]  R. Holliday,et al.  Going for gold [gold in electronics industry] , 2002 .

[14]  C. Deutsch,et al.  Terahertz photonic crystal resonators in double-metal waveguides. , 2007, Optics express.

[15]  Jérôme Faist,et al.  Low frequency terahertz quantum cascade laser operating from 1.6to1.8THz , 2006 .

[16]  Z. Qiao,et al.  Refractive index of thin films of SiO2, ZrO2, and HfO2 as a function of the films' mass density. , 2005, Applied optics.

[17]  D. Parent,et al.  Removal of threading dislocations from patterned heteroepitaxial semiconductors by glide to sidewalls , 1998 .

[18]  Harry A. Atwater,et al.  InGaAs/InP double heterostructures on InP/Si templates fabricated by wafer bonding and hydrogen-induced exfoliation , 2003 .

[19]  Werner Schrenk,et al.  High-temperature performance of GaAs-based bound-to-continuum quantum-cascade lasers , 2003 .

[20]  Bahram Jalali,et al.  Demonstration of a silicon Raman laser. , 2004, Optics express.

[21]  Frank K. Tittel,et al.  Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications , 2005 .