Thin-film silicon solar cells with efficient periodic light trapping texture

For solar cells based on thin-film microcrystalline (μc-Si:H) or amorphous silicon (a-Si:H) with absorber layers in the micrometer range, highly effective light trapping and an optimal incoupling of the entire sun spectrum are essential. To investigate and optimize both effects the wave propagation in thin-film silicon solar cells is modeled in three dimensions (3D) solving the Maxwell equations rigorously. A periodic nanostructured texture is investigated as an alternative to the common randomly rough texture. Inverted 3D pyramids with a periodicity of 850nm and structure height of 400nm show promising high quantum efficiencies close to the Tiedje limit.

[1]  T. Weiland,et al.  Calculating scattering parameters of 3‐dimensional structures by broadband excitation in the time domain , 2008 .

[2]  Helmut Stiebig,et al.  Optical properties of thin‐film silicon solar cells with grating couplers , 2006 .

[3]  Y. Mai,et al.  Improvement of open circuit voltage in microcrystalline silicon solar cells using hot wire buffer layers , 2006 .

[4]  C. Haase,et al.  Fundamental optical simulations of light trapping in microcrystalline silicon thin-film solar cells , 2006, SPIE Photonics Europe.

[5]  S. Shimizu,et al.  Key issues for fabrication of high quality amorphous and microcrystalline silicon solar cells , 2006 .

[6]  Helmut Stiebig,et al.  Silicon thin‐film solar cells with rectangular‐shaped grating couplers , 2006 .

[7]  J. Springer,et al.  Improved three-dimensional optical model for thin-film silicon solar cells , 2004 .

[8]  Joel R. Wendt,et al.  InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures , 2004 .

[9]  A. Shah,et al.  Thin‐film silicon solar cell technology , 2004 .

[10]  Marko Topič,et al.  Potential of light trapping in microcrystalline silicon solar cells with textured substrates , 2003 .

[11]  J. Müller,et al.  Modified Thornton model for magnetron sputtered zinc oxide: film structure and etching behaviour , 2003 .

[12]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[13]  Reinhard Carius,et al.  Optical characteristics of intrinsic microcrystalline silicon , 2002 .

[14]  Martin A. Green,et al.  Third generation photovoltaics , 2002, 2002 Conference on Optoelectronic and Microelectronic Materials and Devices. COMMAD 2002. Proceedings (Cat. No.02EX601).

[15]  E. Yablonovitch Photonic crystals: semiconductors of light. , 2001, Scientific American.

[16]  Kenji Yamamoto,et al.  Thin film Si solar cell fabricated at low temperature , 2000 .

[17]  S. Guha,et al.  Amorphous silicon alloy photovoltaic research—present and future , 2000 .

[18]  R. Tscharner,et al.  Photovoltaic technology: the case for thin-film solar cells , 1999, Science.

[19]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[20]  E. Yablonovitch,et al.  Limiting efficiency of silicon solar cells , 1984, IEEE Transactions on Electron Devices.

[21]  V. Dohm Exact steady-state solution of the quantum-mechanical single-mode laser model , 1976 .