Comparisons of Two Proteomic Analyses of Non-Mucoid and Mucoid Pseudomonas aeruginosa Clinical Isolates from a Cystic Fibrosis Patient

Pseudomonas aeruginosa chronically infects the lungs of cystic fibrosis (CF) patients. The conditions in the CF lung appear to select for P. aeruginosa with advantageous phenotypes for chronic infection. However, the mechanisms that allow the establishment of this chronic infection have not been fully characterized. We have previously reported the transcriptional analysis of two CF isolates strains 383 and 2192. Strain 2192 is a mucoid, alginate overproducing strain whereas strain 383 is non-mucoid. Mucoid strains are associated with chronic infection of the CF lung and non-mucoid strains are the typical initially infecting isolates. To elucidate novel differences between these two strains, we employed two methods of shotgun proteomics: isobaric tags for relative and absolute quantitation (iTRAQ) and two-dimensional gel electrophoresis (2-DE). iTRAQ compares the amount of protein between samples and relies on protein abundance, while 2-DE gel electrophoresis depends on selection of separated protein spots. For both these methods, mass spectrometry was then used to identify proteins differentially expressed between the two strains. The compilation of these two proteomic methods along with Western blot analysis revealed proteins of the HSI-I operon of the type 6 secretion system, showed increased expression in 383 compared to 2192, confirming the our previous transcriptional analysis. Proteomic analysis of other proteins did not fully correlate with the transcriptome but other differentially expressed proteins are discussed. Also, differences were noted between the results obtained for the two proteomic techniques. These shotgun proteomic analyses identified proteins that had been predicted only through gene identification; we now refer to these as “proteins of unknown functions” since their existence has now been established however their functional characterization remains to be elucidated.

[1]  F. H. Damron,et al.  Pseudomonas aeruginosa MucD Regulates the Alginate Pathway through Activation of MucA Degradation via MucP Proteolytic Activity , 2010, Journal of bacteriology.

[2]  J. Heesemann,et al.  Adaptation of Pseudomonas aeruginosa during persistence in the cystic fibrosis lung. , 2010, International journal of medical microbiology : IJMM.

[3]  M. Urbanowski,et al.  Activation of the Pseudomonas aeruginosa AlgU Regulon through mucA Mutation Inhibits Cyclic AMP/Vfr Signaling , 2010, Journal of bacteriology.

[4]  Kristian Fog Nielsen,et al.  Early adaptive developments of Pseudomonas aeruginosa after the transition from life in the environment to persistent colonization in the airways of human cystic fibrosis hosts. , 2010, Environmental microbiology.

[5]  D. Goodlett,et al.  A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. , 2010, Cell host & microbe.

[6]  D. Ohman,et al.  Use of cell wall stress to characterize σ22 (AlgT/U) activation by regulated proteolysis and its regulon in Pseudomonas aeruginosa , 2009, Molecular microbiology.

[7]  P. Visca,et al.  Analysis of the periplasmic proteome of Pseudomonas aeruginosa, a metabolically versatile opportunistic pathogen , 2009, Proteomics.

[8]  Jennifer M. Napper,et al.  Lipotoxin F of Pseudomonas aeruginosa is an AlgU-dependent and alginate-independent outer membrane protein involved in resistance to oxidative stress and adhesion to A549 human lung epithelia. , 2009, Microbiology.

[9]  R. Hancock,et al.  The sensor kinase PhoQ mediates virulence in Pseudomonas aeruginosa. , 2009, Microbiology.

[10]  F. H. Damron,et al.  The Pseudomonas aeruginosa Sensor Kinase KinB Negatively Controls Alginate Production through AlgW-Dependent MucA Proteolysis , 2009, Journal of bacteriology.

[11]  Raymond Lo,et al.  Pseudomonas Genome Database: facilitating user-friendly, comprehensive comparisons of microbial genomes , 2008, Nucleic Acids Res..

[12]  H. Schweizer,et al.  PBAD-Based Shuttle Vectors for Functional Analysis of Toxic and Highly Regulated Genes in Pseudomonas and Burkholderia spp. and Other Bacteria , 2008, Applied and Environmental Microbiology.

[13]  Lei Xin,et al.  Analysis of iTRAQ data using Mascot and Peaks quantification algorithms. , 2008, Briefings in functional genomics & proteomics.

[14]  B. Birren,et al.  Dynamics of Pseudomonas aeruginosa genome evolution , 2008, Proceedings of the National Academy of Sciences.

[15]  J. Goldberg,et al.  A novel oxidized low-density lipoprotein-binding protein from Pseudomonas aeruginosa. , 2008, Microbiology.

[16]  M. Lieberman,et al.  Proteomic, Microarray, and Signature-Tagged Mutagenesis Analyses of Anaerobic Pseudomonas aeruginosa at pH 6.5, Likely Representing Chronic, Late-Stage Cystic Fibrosis Airway Conditions , 2008, Journal of bacteriology.

[17]  S. Molin,et al.  In Situ Growth Rates and Biofilm Development of Pseudomonas aeruginosa Populations in Chronic Lung Infections , 2007, Journal of bacteriology.

[18]  M. Franklin,et al.  Strain-specific proteome responses of Pseudomonas aeruginosa to biofilm-associated growth and to calcium. , 2007, Microbiology.

[19]  R. Sirdeshmukh,et al.  Role of proteins in resistance mechanism of Pseudomonas fluorescens against heavy metal induced stress with proteomics approach. , 2006, Journal of biotechnology.

[20]  A. J. Leech,et al.  Cell wall‐inhibitory antibiotics activate the alginate biosynthesis operon in Pseudomonas aeruginosa: roles of σ22 (AlgT) and the AlgW and Prc proteases , 2006, Molecular microbiology.

[21]  D. Wozniak,et al.  The AlgT-Dependent Transcriptional Regulator AmrZ (AlgZ) Inhibits Flagellum Biosynthesis in Mucoid, Nonmotile Pseudomonas aeruginosa Cystic Fibrosis Isolates , 2006, Journal of bacteriology.

[22]  Stephen Lory,et al.  A Virulence Locus of Pseudomonas aeruginosa Encodes a Protein Secretion Apparatus , 2006, Science.

[23]  S. Lory,et al.  Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[24]  D. Wozniak,et al.  The Pseudomonas aeruginosa Ribbon-Helix-Helix DNA-Binding Protein AlgZ (AmrZ) Controls Twitching Motility and Biogenesis of Type IV Pili , 2006, Journal of bacteriology.

[25]  Samuel I. Miller,et al.  The Pseudomonas aeruginosa Proteome during Anaerobic Growth , 2005, Journal of bacteriology.

[26]  M. Wolfgang,et al.  The Alternative Sigma Factor AlgT Represses Pseudomonas aeruginosa Flagellum Biosynthesis by Inhibiting Expression of fleQ , 2005, Journal of bacteriology.

[27]  U. Romling,et al.  Proteome analysis reveals adaptation of Pseudomonas aeruginosa to the cystic fibrosis lung environment , 2005, Proteomics.

[28]  S. Cole,et al.  Immunogenic membrane-associated proteins of Mycobacterium tuberculosis revealed by proteomics. , 2005, Microbiology.

[29]  D. Wozniak,et al.  Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis , 2005, Molecular microbiology.

[30]  A. Görg,et al.  Biofilm formation of Pseudomonas putida IsoF: the role of quorum sensing as assessed by proteomics. , 2005, Systematic and applied microbiology.

[31]  H. Baker,et al.  MucA-Mediated Coordination of Type III Secretion and Alginate Synthesis in Pseudomonas aeruginosa , 2004, Journal of bacteriology.

[32]  S. Lory,et al.  A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. , 2004, Developmental cell.

[33]  V. Deretic,et al.  Microarray Analysis Reveals Induction of Lipoprotein Genes in Mucoid Pseudomonas aeruginosa: Implications for Inflammation in Cystic Fibrosis , 2004, Infection and Immunity.

[34]  V. Deretic,et al.  Microarray Analysis and Functional Characterization of the Nitrosative Stress Response in Nonmucoid and Mucoid Pseudomonas aeruginosa , 2004, Journal of bacteriology.

[35]  Richard D. Smith,et al.  Global analysis of the membrane subproteome of Pseudomonas aeruginosa using liquid chromatography-tandem mass spectrometry. , 2004, Journal of proteome research.

[36]  S. Lory,et al.  Analysis of regulatory networks in Pseudomonas aeruginosa by genomewide transcriptional profiling. , 2004, Current opinion in microbiology.

[37]  K. Ohlendieck Extraction of membrane proteins. , 2004, Methods in molecular biology.

[38]  J. Wehland,et al.  Inter- and Intraclonal Diversity of the Pseudomonas aeruginosa Proteome Manifests within the Secretome , 2003, Journal of bacteriology.

[39]  Samuel I. Miller,et al.  Proteomic analysis of Pseudomonas aeruginosa grown under magnesium limitation , 2003, Journal of the American Society for Mass Spectrometry.

[40]  J. Mattick,et al.  Proteome analysis of extracellular proteins regulated by the las and rhl quorum sensing systems in Pseudomonas aeruginosa PAO1. , 2003, Microbiology.

[41]  A. Görg,et al.  Analysis of the quorum‐sensing regulon of the opportunistic pathogen Burkholderia cepacia H111 by proteomics , 2003, Electrophoresis.

[42]  V. Deretic,et al.  Microarray Analysis of Global Gene Expression in Mucoid Pseudomonas aeruginosa , 2003, Journal of bacteriology.

[43]  M. Franklin,et al.  Mutant Analysis and Cellular Localization of the AlgI, AlgJ, and AlgF Proteins Required for O Acetylation of Alginate in Pseudomonas aeruginosa , 2002, Journal of bacteriology.

[44]  Gerald B. Pier,et al.  Lung Infections Associated with Cystic Fibrosis , 2002, Clinical Microbiology Reviews.

[45]  V. Deretic,et al.  Global Genomic Analysis of AlgU (σE)-Dependent Promoters (Sigmulon) in Pseudomonas aeruginosa and Implications for Inflammatory Processes in Cystic Fibrosis , 2002, Journal of bacteriology.

[46]  J. Goldberg,et al.  Pseudomonas aeruginosa and a Proteomic Approach to Bacterial Pathogenesis , 2002, Disease markers.

[47]  G. Pier,et al.  Role of Alginate O Acetylation in Resistance of Mucoid Pseudomonas aeruginosa to Opsonic Phagocytosis , 2001, Infection and Immunity.

[48]  Clement BordierO Phase Separation of Integral Membrane Proteins in Triton X-114 Solution , 2001 .

[49]  K. Mathee,et al.  Proteome Analysis of the Effect of Mucoid Conversion on Global Protein Expression in Pseudomonas aeruginosa Strain PAO1 Shows Induction of the Disulfide Bond Isomerase, DsbA , 2000, Journal of bacteriology.

[50]  J. Goldberg,et al.  Comparison of proteins expressed by Pseudomonas aeruginosa strains representing initial and chronic isolates from a cystic fibrosis patient: an analysis by 2-D gel electrophoresis and capillary column liquid chromatography-tandem mass spectrometry. , 2000, Microbiology.

[51]  M. Quadroni,et al.  Proteome mapping, mass spectrometric sequencing and reverse transcription-PCR for characterization of the sulfate starvation-induced response in Pseudomonas aeruginosa PAO1. , 1999, European journal of biochemistry.

[52]  D. Wozniak,et al.  Pseudomonas aeruginosa AlgZ, a ribbon–helix–helix DNA‐binding protein, is essential for alginate synthesis and algD transcriptional activation , 1999, Molecular microbiology.

[53]  D. Hochstrasser,et al.  Extraction of membrane proteins by differential solubilization for separation using two‐dimensional gel electrophoresis , 1998, Electrophoresis.

[54]  W. G. Bryson,et al.  Improved protein solubility in two‐dimensional electrophoresis using tributyl phosphine as reducing agent , 1998, Electrophoresis.

[55]  M. Ulanova,et al.  The clonal antibody response to Pseudomonas aeruginosa heat shock protein is highly diverse in cystic fibrosis patients , 1997, Acta Pathologica, Microbiologica et Immunologica Scandinavica (APMIS).

[56]  V. Deretic,et al.  Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. , 1996, Microbiological reviews.

[57]  K. Ohlendieck Extraction of membrane proteins. , 1996, Methods in molecular biology.

[58]  N. Russell,et al.  GDP-mannose dehydrogenase is the key regulatory enzyme in alginate biosynthesis in Pseudomonas aeruginosa: evidence from metabolite studies. , 1994, Microbiology.

[59]  J. Goldberg,et al.  The Pseudomonas aeruginosa algC gene encodes phosphoglucomutase, required for the synthesis of a complete lipopolysaccharide core , 1994, Journal of bacteriology.

[60]  C. Chitnis,et al.  Genetic analysis of the alginate biosynthetic gene cluster of Pseudomonas aeruginosa shows evidence of an operonic structure , 1993, Molecular microbiology.

[61]  D. Martin,et al.  Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[62]  A. Chakrabarty,et al.  Characterization and regulation of the Pseudomonas aeruginosa algC gene encoding phosphomannomutase. , 1991, The Journal of biological chemistry.

[63]  R. Hancock,et al.  Comparison of the outer membrane protein and lipopolysaccharide profiles of mucoid and nonmucoid Pseudomonas aeruginosa , 1990, Journal of clinical microbiology.

[64]  E. Clercq Frontiers in Microbiology , 1987, New Perspectives in Clinical Microbiology.

[65]  C. Bordier Phase separation of integral membrane proteins in Triton X-114 solution. , 1981, The Journal of biological chemistry.

[66]  Chunfang ZHANGt Pseudomonas aeruginosa. , 1966, Lancet.