Comparisons of Two Proteomic Analyses of Non-Mucoid and Mucoid Pseudomonas aeruginosa Clinical Isolates from a Cystic Fibrosis Patient
暂无分享,去创建一个
J. Goldberg | J. Fox | J. Mekalanos | N. Sherman | F. H. Damron | M. Basler | A. DiGiandomenico | J. Rao | F. Damron
[1] F. H. Damron,et al. Pseudomonas aeruginosa MucD Regulates the Alginate Pathway through Activation of MucA Degradation via MucP Proteolytic Activity , 2010, Journal of bacteriology.
[2] J. Heesemann,et al. Adaptation of Pseudomonas aeruginosa during persistence in the cystic fibrosis lung. , 2010, International journal of medical microbiology : IJMM.
[3] M. Urbanowski,et al. Activation of the Pseudomonas aeruginosa AlgU Regulon through mucA Mutation Inhibits Cyclic AMP/Vfr Signaling , 2010, Journal of bacteriology.
[4] Kristian Fog Nielsen,et al. Early adaptive developments of Pseudomonas aeruginosa after the transition from life in the environment to persistent colonization in the airways of human cystic fibrosis hosts. , 2010, Environmental microbiology.
[5] D. Goodlett,et al. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. , 2010, Cell host & microbe.
[6] D. Ohman,et al. Use of cell wall stress to characterize σ22 (AlgT/U) activation by regulated proteolysis and its regulon in Pseudomonas aeruginosa , 2009, Molecular microbiology.
[7] P. Visca,et al. Analysis of the periplasmic proteome of Pseudomonas aeruginosa, a metabolically versatile opportunistic pathogen , 2009, Proteomics.
[8] Jennifer M. Napper,et al. Lipotoxin F of Pseudomonas aeruginosa is an AlgU-dependent and alginate-independent outer membrane protein involved in resistance to oxidative stress and adhesion to A549 human lung epithelia. , 2009, Microbiology.
[9] R. Hancock,et al. The sensor kinase PhoQ mediates virulence in Pseudomonas aeruginosa. , 2009, Microbiology.
[10] F. H. Damron,et al. The Pseudomonas aeruginosa Sensor Kinase KinB Negatively Controls Alginate Production through AlgW-Dependent MucA Proteolysis , 2009, Journal of bacteriology.
[11] Raymond Lo,et al. Pseudomonas Genome Database: facilitating user-friendly, comprehensive comparisons of microbial genomes , 2008, Nucleic Acids Res..
[12] H. Schweizer,et al. PBAD-Based Shuttle Vectors for Functional Analysis of Toxic and Highly Regulated Genes in Pseudomonas and Burkholderia spp. and Other Bacteria , 2008, Applied and Environmental Microbiology.
[13] Lei Xin,et al. Analysis of iTRAQ data using Mascot and Peaks quantification algorithms. , 2008, Briefings in functional genomics & proteomics.
[14] B. Birren,et al. Dynamics of Pseudomonas aeruginosa genome evolution , 2008, Proceedings of the National Academy of Sciences.
[15] J. Goldberg,et al. A novel oxidized low-density lipoprotein-binding protein from Pseudomonas aeruginosa. , 2008, Microbiology.
[16] M. Lieberman,et al. Proteomic, Microarray, and Signature-Tagged Mutagenesis Analyses of Anaerobic Pseudomonas aeruginosa at pH 6.5, Likely Representing Chronic, Late-Stage Cystic Fibrosis Airway Conditions , 2008, Journal of bacteriology.
[17] S. Molin,et al. In Situ Growth Rates and Biofilm Development of Pseudomonas aeruginosa Populations in Chronic Lung Infections , 2007, Journal of bacteriology.
[18] M. Franklin,et al. Strain-specific proteome responses of Pseudomonas aeruginosa to biofilm-associated growth and to calcium. , 2007, Microbiology.
[19] R. Sirdeshmukh,et al. Role of proteins in resistance mechanism of Pseudomonas fluorescens against heavy metal induced stress with proteomics approach. , 2006, Journal of biotechnology.
[20] A. J. Leech,et al. Cell wall‐inhibitory antibiotics activate the alginate biosynthesis operon in Pseudomonas aeruginosa: roles of σ22 (AlgT) and the AlgW and Prc proteases , 2006, Molecular microbiology.
[21] D. Wozniak,et al. The AlgT-Dependent Transcriptional Regulator AmrZ (AlgZ) Inhibits Flagellum Biosynthesis in Mucoid, Nonmotile Pseudomonas aeruginosa Cystic Fibrosis Isolates , 2006, Journal of bacteriology.
[22] Stephen Lory,et al. A Virulence Locus of Pseudomonas aeruginosa Encodes a Protein Secretion Apparatus , 2006, Science.
[23] S. Lory,et al. Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. , 2006, Proceedings of the National Academy of Sciences of the United States of America.
[24] D. Wozniak,et al. The Pseudomonas aeruginosa Ribbon-Helix-Helix DNA-Binding Protein AlgZ (AmrZ) Controls Twitching Motility and Biogenesis of Type IV Pili , 2006, Journal of bacteriology.
[25] Samuel I. Miller,et al. The Pseudomonas aeruginosa Proteome during Anaerobic Growth , 2005, Journal of bacteriology.
[26] M. Wolfgang,et al. The Alternative Sigma Factor AlgT Represses Pseudomonas aeruginosa Flagellum Biosynthesis by Inhibiting Expression of fleQ , 2005, Journal of bacteriology.
[27] U. Romling,et al. Proteome analysis reveals adaptation of Pseudomonas aeruginosa to the cystic fibrosis lung environment , 2005, Proteomics.
[28] S. Cole,et al. Immunogenic membrane-associated proteins of Mycobacterium tuberculosis revealed by proteomics. , 2005, Microbiology.
[29] D. Wozniak,et al. Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis , 2005, Molecular microbiology.
[30] A. Görg,et al. Biofilm formation of Pseudomonas putida IsoF: the role of quorum sensing as assessed by proteomics. , 2005, Systematic and applied microbiology.
[31] H. Baker,et al. MucA-Mediated Coordination of Type III Secretion and Alginate Synthesis in Pseudomonas aeruginosa , 2004, Journal of bacteriology.
[32] S. Lory,et al. A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. , 2004, Developmental cell.
[33] V. Deretic,et al. Microarray Analysis Reveals Induction of Lipoprotein Genes in Mucoid Pseudomonas aeruginosa: Implications for Inflammation in Cystic Fibrosis , 2004, Infection and Immunity.
[34] V. Deretic,et al. Microarray Analysis and Functional Characterization of the Nitrosative Stress Response in Nonmucoid and Mucoid Pseudomonas aeruginosa , 2004, Journal of bacteriology.
[35] Richard D. Smith,et al. Global analysis of the membrane subproteome of Pseudomonas aeruginosa using liquid chromatography-tandem mass spectrometry. , 2004, Journal of proteome research.
[36] S. Lory,et al. Analysis of regulatory networks in Pseudomonas aeruginosa by genomewide transcriptional profiling. , 2004, Current opinion in microbiology.
[37] K. Ohlendieck. Extraction of membrane proteins. , 2004, Methods in molecular biology.
[38] J. Wehland,et al. Inter- and Intraclonal Diversity of the Pseudomonas aeruginosa Proteome Manifests within the Secretome , 2003, Journal of bacteriology.
[39] Samuel I. Miller,et al. Proteomic analysis of Pseudomonas aeruginosa grown under magnesium limitation , 2003, Journal of the American Society for Mass Spectrometry.
[40] J. Mattick,et al. Proteome analysis of extracellular proteins regulated by the las and rhl quorum sensing systems in Pseudomonas aeruginosa PAO1. , 2003, Microbiology.
[41] A. Görg,et al. Analysis of the quorum‐sensing regulon of the opportunistic pathogen Burkholderia cepacia H111 by proteomics , 2003, Electrophoresis.
[42] V. Deretic,et al. Microarray Analysis of Global Gene Expression in Mucoid Pseudomonas aeruginosa , 2003, Journal of bacteriology.
[43] M. Franklin,et al. Mutant Analysis and Cellular Localization of the AlgI, AlgJ, and AlgF Proteins Required for O Acetylation of Alginate in Pseudomonas aeruginosa , 2002, Journal of bacteriology.
[44] Gerald B. Pier,et al. Lung Infections Associated with Cystic Fibrosis , 2002, Clinical Microbiology Reviews.
[45] V. Deretic,et al. Global Genomic Analysis of AlgU (σE)-Dependent Promoters (Sigmulon) in Pseudomonas aeruginosa and Implications for Inflammatory Processes in Cystic Fibrosis , 2002, Journal of bacteriology.
[46] J. Goldberg,et al. Pseudomonas aeruginosa and a Proteomic Approach to Bacterial Pathogenesis , 2002, Disease markers.
[47] G. Pier,et al. Role of Alginate O Acetylation in Resistance of Mucoid Pseudomonas aeruginosa to Opsonic Phagocytosis , 2001, Infection and Immunity.
[48] Clement BordierO. Phase Separation of Integral Membrane Proteins in Triton X-114 Solution , 2001 .
[49] K. Mathee,et al. Proteome Analysis of the Effect of Mucoid Conversion on Global Protein Expression in Pseudomonas aeruginosa Strain PAO1 Shows Induction of the Disulfide Bond Isomerase, DsbA , 2000, Journal of bacteriology.
[50] J. Goldberg,et al. Comparison of proteins expressed by Pseudomonas aeruginosa strains representing initial and chronic isolates from a cystic fibrosis patient: an analysis by 2-D gel electrophoresis and capillary column liquid chromatography-tandem mass spectrometry. , 2000, Microbiology.
[51] M. Quadroni,et al. Proteome mapping, mass spectrometric sequencing and reverse transcription-PCR for characterization of the sulfate starvation-induced response in Pseudomonas aeruginosa PAO1. , 1999, European journal of biochemistry.
[52] D. Wozniak,et al. Pseudomonas aeruginosa AlgZ, a ribbon–helix–helix DNA‐binding protein, is essential for alginate synthesis and algD transcriptional activation , 1999, Molecular microbiology.
[53] D. Hochstrasser,et al. Extraction of membrane proteins by differential solubilization for separation using two‐dimensional gel electrophoresis , 1998, Electrophoresis.
[54] W. G. Bryson,et al. Improved protein solubility in two‐dimensional electrophoresis using tributyl phosphine as reducing agent , 1998, Electrophoresis.
[55] M. Ulanova,et al. The clonal antibody response to Pseudomonas aeruginosa heat shock protein is highly diverse in cystic fibrosis patients , 1997, Acta Pathologica, Microbiologica et Immunologica Scandinavica (APMIS).
[56] V. Deretic,et al. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. , 1996, Microbiological reviews.
[57] K. Ohlendieck. Extraction of membrane proteins. , 1996, Methods in molecular biology.
[58] N. Russell,et al. GDP-mannose dehydrogenase is the key regulatory enzyme in alginate biosynthesis in Pseudomonas aeruginosa: evidence from metabolite studies. , 1994, Microbiology.
[59] J. Goldberg,et al. The Pseudomonas aeruginosa algC gene encodes phosphoglucomutase, required for the synthesis of a complete lipopolysaccharide core , 1994, Journal of bacteriology.
[60] C. Chitnis,et al. Genetic analysis of the alginate biosynthetic gene cluster of Pseudomonas aeruginosa shows evidence of an operonic structure , 1993, Molecular microbiology.
[61] D. Martin,et al. Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. , 1993, Proceedings of the National Academy of Sciences of the United States of America.
[62] A. Chakrabarty,et al. Characterization and regulation of the Pseudomonas aeruginosa algC gene encoding phosphomannomutase. , 1991, The Journal of biological chemistry.
[63] R. Hancock,et al. Comparison of the outer membrane protein and lipopolysaccharide profiles of mucoid and nonmucoid Pseudomonas aeruginosa , 1990, Journal of clinical microbiology.
[64] E. Clercq. Frontiers in Microbiology , 1987, New Perspectives in Clinical Microbiology.
[65] C. Bordier. Phase separation of integral membrane proteins in Triton X-114 solution. , 1981, The Journal of biological chemistry.
[66] Chunfang ZHANGt. Pseudomonas aeruginosa. , 1966, Lancet.