Robust adaptive control for a class of MIMO nonlinear systems with guaranteed error bounds

The design of stabilizing controllers for multiple-input-multiple-output (MIMO) nonlinear plants with unknown nonlinearities is a challenging problem. The high dimensionality coupled with the inability to identify the nonlinearities online or offline accurately motivates the design of stabilizing controllers based on approximations or on approximate estimates of the plant nonlinearities that are simple enough to be generated in real time. The price paid in such case, could be lack of theoretical guarantees for global stability, and nonzero tracking or regulation error at steady state. In this paper, a nonlinear robust adaptive control algorithm is designed and analyzed for a class of MIMO nonlinear systems with unknown nonlinearities. The proposed control scheme provides a general approach to bypass the stabilizability problem where the estimated plant becomes uncontrollable without any restrictive assumptions. The controller is continuous and guarantees closed-loop semi-global stability and convergence of the tracking error to a small residual set. The size of the tracking error at steady state can be specified a priori and guaranteed by choosing certain design parameters. A procedure for choosing these parameters is presented. The properties of the proposed control algorithm are demonstrated using simulations.

[1]  Hassan K. Khalil,et al.  Output feedback control of nonlinear systems using RBF neural networks , 2000, IEEE Trans. Neural Networks Learn. Syst..

[2]  Yeong-Chan Chang,et al.  An adaptive H∞ tracking control for a class of nonlinear multiple-input multiple-output (MIMO) systems , 2001, IEEE Trans. Autom. Control..

[3]  Petros A. Ioannou,et al.  ROBUST ADAPTIVE CONTROL OF LINEARIZABLE NONLINEAR SINGLE INPUT SYSTEMS , 2002 .

[4]  A. Annaswamy,et al.  Adaptive control of a class of nonlinear systems with convex/concave parameterization , 1999 .

[5]  Anuradha M. Annaswamy,et al.  Adaptive control of continuous time systems with convex/concave parametrization , 1998, Autom..

[6]  H. Khalil,et al.  Adaptive output feedback control of nonlinear systems represented by input-output models , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[7]  A. Isidori,et al.  Adaptive control of linearizable systems , 1989 .

[8]  Jooyoung Park,et al.  Approximation and Radial-Basis-Function Networks , 1993, Neural Computation.

[9]  A. Annaswamy,et al.  Adaptive control of nonlinear systems with a triangular structure , 1994, IEEE Trans. Autom. Control..

[10]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[11]  S.S. Sastry,et al.  Approximate decoupling and asymptotic tracking for MIMO systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[12]  Anuradha M. Annaswamy,et al.  Adaptive control of nonlinear dynamic systems using θ-adaptive neural networks , 1997, Autom..

[13]  David D. Yao,et al.  Sequential quality control of a machining process , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[14]  Tor Arne Johansen,et al.  Fuzzy model based control: stability, robustness, and performance issues , 1994, IEEE Trans. Fuzzy Syst..

[15]  Robert M. Sanner,et al.  Gaussian Networks for Direct Adaptive Control , 1991, 1991 American Control Conference.

[16]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[17]  Frank L. Lewis,et al.  Neural net robot controller with guaranteed tracking performance , 1993, Proceedings of 8th IEEE International Symposium on Intelligent Control.

[18]  Frank L. Lewis,et al.  Neural network output feedback control of robot manipulators , 1999, IEEE Trans. Robotics Autom..

[19]  Kevin M. Passino,et al.  Stable multi-input multi-output adaptive fuzzy/neural control , 1999, IEEE Trans. Fuzzy Syst..

[20]  George A. Rovithakis Stable adaptive neuro-control design via Lyapunov function derivative estimation , 2001, Autom..

[21]  Anuradha M. Annaswamy,et al.  Adaptive control of nonlinearly parameterized systems with a triangular structure , 2002, Autom..

[22]  S. Shankar Sastry,et al.  Adaptive Control of Mechanical Manipulators , 1987, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[23]  M. Polycarpou,et al.  Stable adaptive tracking of uncertain systems using nonlinearly parametrized on-line approximators , 1998 .

[24]  David G. Taylor,et al.  Adaptive Regulation of Nonlinear Systems with Unmodeled Dynamics , 1988, 1988 American Control Conference.

[25]  J. Hedrick,et al.  Control of multivariable non-linear systems by the sliding mode method , 1987 .

[26]  S. Shankar Sastry,et al.  Adaptive Control of Mechanical Manipulators , 1987 .

[27]  Hassan K. Khalil,et al.  Robust adaptive output feedback control of nonlinear systems without persistence of excitation , 1997, Autom..

[28]  Frank L. Lewis,et al.  Feedback linearization using neural networks , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).

[29]  Frank L. Lewis,et al.  Multilayer neural-net robot controller with guaranteed tracking performance , 1996, IEEE Trans. Neural Networks.

[30]  Kevin M. Passino,et al.  Stable adaptive control using fuzzy systems and neural networks , 1996, IEEE Trans. Fuzzy Syst..

[31]  Marios M. Polycarpou,et al.  Stable adaptive neural control scheme for nonlinear systems , 1996, IEEE Trans. Autom. Control..

[32]  M. Tomizuka,et al.  Adaptive robust control of MIMO nonlinear systems with guaranteed transient performance , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[33]  Frank L. Lewis,et al.  Robust backstepping control of nonlinear systems using neural networks , 2000, IEEE Trans. Syst. Man Cybern. Part A.

[34]  Murat Arcak,et al.  Constructive nonlinear control: a historical perspective , 2001, Autom..

[35]  I. Kanellakopoulos,et al.  Systematic Design of Adaptive Controllers for Feedback Linearizable Systems , 1991, 1991 American Control Conference.

[36]  Fu-Chuang Chen,et al.  Adaptive control of non-linear continuous-time systems using neural networks—general relative degree and MIMO cases , 1993 .

[37]  A. Annaswamy,et al.  Adaptive control of a class of non-linearly parametrized systems using convexification , 2000 .

[38]  Weiping Li,et al.  Composite adaptive control of robot manipulators , 1989, Autom..

[39]  Elias B. Kosmatopoulos,et al.  A switching adaptive controller for feedback linearizable systems , 1999, IEEE Trans. Autom. Control..

[40]  Kumpati S. Narendra,et al.  Identification and control of dynamical systems using neural networks , 1990, IEEE Trans. Neural Networks.

[41]  Jean-Jacques E. Slotine,et al.  Adaptive sliding controller synthesis for non-linear systems , 1986 .

[42]  Fu-Chuang Chen,et al.  Adaptive control of nonlinear systems using neural networks , 1992 .

[43]  Marios M. Polycarpou,et al.  High-order neural network structures for identification of dynamical systems , 1995, IEEE Trans. Neural Networks.

[44]  M. Polycarpou,et al.  On the existence and uniqueness of solutions in adaptive control systems , 1993, IEEE Trans. Autom. Control..

[45]  Frank L. Lewis,et al.  Multilayer discrete-time neural-net controller with guaranteed performance , 1996, IEEE Trans. Neural Networks.

[46]  Chen-Chung Liu,et al.  ADAPTIVE CONTROL OF NONLINEAR CONTINUOUS-TIME SYSTEMS USING NEURAL NETWORKS - GENERAL RELATIVE DEGREE AND MIMO CASES , 1993 .

[47]  Marios M. Polycarpou,et al.  Modelling, Identification and Stable Adaptive Control of Continuous-Time Nonlinear Dynamical Systems Using Neural Networks , 1992, 1992 American Control Conference.

[48]  Chen-Chung Liu,et al.  Adaptively controlling nonlinear continuous-time systems using multilayer neural networks , 1994, IEEE Trans. Autom. Control..

[49]  Ken-ichi Funahashi,et al.  On the approximate realization of continuous mappings by neural networks , 1989, Neural Networks.