Polymer wedge for perfectly vertical light coupling to silicon

We present the design and fabrication of a refractive polymer wedge that allows perfectly vertical coupling of light into a silicon waveguide, which is of interest for flip-chip bonding of vertical cavity emitting light sources on a silicon integrated circuit. The structure includes a conventional diffractive grating coupler that requires off-normal incidence to avoid second order Bragg reflections. The polymer wedge is thus used to refract vertically impinging light into an off-normal wave that couples into the underlying grating. The fabrication involves two steps: mold fabrication and imprint replication. Firstly negative wedge-shaped craters are etched into a quartz mold by Focused-ion-beam milling. Secondly the mold is used to imprint a UV-curable polymer onto a silicon chip containing waveguides and grating couplers, and so replicating the wedges. The characterization setup consisted of a fiber-to-fiber transmission measurement of a silicon waveguide equipped with a pair of grating couplers and polymer wedges. The obtained fiber coupling efficiency was equal to the efficiency of regular grating couplers and fiber positioned at an off-normal angle. The proposed fabrication method enables low cost integration of vertical cavity emitting light sources on silicon integrated photonic circuits.