A Global Jacobian Method for Mortar Discretizations of Nonlinear Porous Media Flows
暂无分享,去创建一个
Gergina Pencheva | Mary F. Wheeler | Ivan Yotov | Benjamin Ganis | Mika Juntunen | M. Wheeler | I. Yotov | M. Juntunen | G. Pencheva | B. Ganis
[1] Thomas Y. Hou,et al. A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .
[2] Mary F. Wheeler,et al. Coupling Discontinuous Galerkin and Mixed Finite Element Discretizations using Mortar Finite Elements , 2008, SIAM J. Numer. Anal..
[3] Todd Arbogast,et al. A Multiscale Mortar Mixed Finite Element Method , 2007, Multiscale Model. Simul..
[4] Mary F. Wheeler,et al. Physical and Computational Domain Decompositions for Modeling Subsurface Flows , 2007 .
[5] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[6] Jørg E. Aarnes,et al. On the Use of a Mixed Multiscale Finite Element Method for GreaterFlexibility and Increased Speed or Improved Accuracy in Reservoir Simulation , 2004, Multiscale Model. Simul..
[7] Todd Arbogast,et al. Analysis of a Two-Scale, Locally Conservative Subgrid Upscaling for Elliptic Problems , 2004, SIAM J. Numer. Anal..
[8] Mary F. Wheeler,et al. A Multipoint Flux Mixed Finite Element Method , 2006, SIAM J. Numer. Anal..
[9] Malgorzata Peszynska,et al. A parallel multiblock black-oil model in multimodel implementation , 2002 .
[10] Todd Arbogast,et al. Subgrid Upscaling and Mixed Multiscale Finite Elements , 2006, SIAM J. Numer. Anal..
[11] Thomas Y. Hou,et al. Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients , 1999, Math. Comput..
[12] H. Tchelepi,et al. Multi-scale finite-volume method for elliptic problems in subsurface flow simulation , 2003 .
[13] A. Quarteroni,et al. Numerical Approximation of Partial Differential Equations , 2008 .
[14] Stein Krogstad,et al. A Hierarchical Multiscale Method for Two-Phase Flow Based upon Mixed Finite Elements and Nonuniform Coarse Grids , 2006, Multiscale Model. Simul..
[15] M. Wheeler,et al. Mixed Finite Elements for Elliptic Problems with Tensor Coefficients as Cell-Centered Finite Differences , 1997 .
[16] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[17] Michael A. Heroux,et al. Trilinos users guide. , 2003 .
[18] Ivan Yotov,et al. Implementation of a mortar mixed finite element method using a Multiscale Flux Basis , 2009 .
[19] T. Hughes. Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .
[20] Gene H. Golub,et al. Numerical solution of saddle point problems , 2005, Acta Numerica.
[21] Gergina Pencheva,et al. A Frozen Jacobian Multiscale Mortar Preconditioner for Nonlinear Interface Operators , 2012, Multiscale Model. Simul..
[22] Gergina Pencheva,et al. Balancing domain decomposition for mortar mixed finite element methods , 2003, Numer. Linear Algebra Appl..
[23] Jonathan J. Hu,et al. ML 5.0 Smoothed Aggregation Users's Guide , 2006 .
[24] C. Kelley. Iterative Methods for Linear and Nonlinear Equations , 1987 .
[25] Mary F. Wheeler,et al. Mortar coupling and upscaling of pore-scale models , 2008 .
[26] Thomas Y. Hou,et al. Convergence of a Nonconforming Multiscale Finite Element Method , 2000, SIAM J. Numer. Anal..
[27] Andrea Toselli,et al. Domain decomposition methods : algorithms and theory , 2005 .
[28] M. Wheeler,et al. Multigrid on the interface for mortar mixed finite element methods for elliptic problems , 2000 .
[29] Todd Arbogast,et al. Mixed Finite Element Methods on Nonmatching Multiblock Grids , 2000, SIAM J. Numer. Anal..
[30] Ivan Yotov,et al. A multilevel Newton–Krylov interface solver for multiphysics couplings of flow in porous media , 2001, Numer. Linear Algebra Appl..
[31] Ivan Yotov,et al. Interface solvers and preconditioners of domain decomposition type for multiphase flow in multiblock porous media , 2001 .
[32] Michael Andrew Christie,et al. Tenth SPE Comparative Solution Project: a comparison of upscaling techniques , 2001 .
[33] Sören Bartels,et al. Numerical Approximation of Partial Differential Equations , 2016 .
[34] P. Raviart,et al. A mixed finite element method for 2-nd order elliptic problems , 1977 .
[35] Zhiming Chen,et al. A mixed multiscale finite element method for elliptic problems with oscillating coefficients , 2003, Math. Comput..
[36] Todd Arbogast,et al. A Parallel Multiblock/Multidomain Approach for Reservoir Simulation , 1999 .
[37] Mary F. Wheeler,et al. Enhanced Velocity Mixed Finite Element Methods for Flow in Multiblock Domains , 2002 .
[38] Mary F. Wheeler,et al. Mortar Upscaling for Multiphase Flow in Porous Media , 2002 .
[39] D. Arnold,et al. Mixed and nonconforming finite element methods : implementation, postprocessing and error estimates , 1985 .
[40] T. Hughes,et al. The variational multiscale method—a paradigm for computational mechanics , 1998 .
[41] Yalchin Efendiev,et al. Mixed Multiscale Finite Element Methods Using Limited Global Information , 2008, Multiscale Model. Simul..
[42] Luc Giraud,et al. A Set of GMRES Routines for Real and Complex Arithmetics , 1997 .
[43] Ivan Yotov,et al. Coupling Stokes--Darcy Flow with Transport , 2009, SIAM J. Sci. Comput..