A Global Jacobian Method for Mortar Discretizations of Nonlinear Porous Media Flows

We describe a nonoverlapping domain decomposition algorithm for nonlinear porous media flows discretized with the multiscale mortar mixed finite element method. There are two main ideas: (1) linearize the global system in both subdomain and interface variables simultaneously to yield a single Newton iteration; and (2) algebraically eliminate subdomain velocities (and optionally, subdomain pressures) to solve linear systems for the 1st (or the 2nd) Schur complements. Solving the 1st Schur complement system gives the multiscale solution without the need to solve an interface iteration. Solving the 2nd Schur complement system gives a linear interface problem for a nonlinear model. The methods are less complex than a previously developed nonlinear mortar algorithm, which requires two nested Newton iterations and a forward difference approximation. Furthermore, efficient linear preconditioners can be applied to speed up the iteration. The methods are implemented in parallel, and a numerical study is performed ...

[1]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[2]  Mary F. Wheeler,et al.  Coupling Discontinuous Galerkin and Mixed Finite Element Discretizations using Mortar Finite Elements , 2008, SIAM J. Numer. Anal..

[3]  Todd Arbogast,et al.  A Multiscale Mortar Mixed Finite Element Method , 2007, Multiscale Model. Simul..

[4]  Mary F. Wheeler,et al.  Physical and Computational Domain Decompositions for Modeling Subsurface Flows , 2007 .

[5]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[6]  Jørg E. Aarnes,et al.  On the Use of a Mixed Multiscale Finite Element Method for GreaterFlexibility and Increased Speed or Improved Accuracy in Reservoir Simulation , 2004, Multiscale Model. Simul..

[7]  Todd Arbogast,et al.  Analysis of a Two-Scale, Locally Conservative Subgrid Upscaling for Elliptic Problems , 2004, SIAM J. Numer. Anal..

[8]  Mary F. Wheeler,et al.  A Multipoint Flux Mixed Finite Element Method , 2006, SIAM J. Numer. Anal..

[9]  Malgorzata Peszynska,et al.  A parallel multiblock black-oil model in multimodel implementation , 2002 .

[10]  Todd Arbogast,et al.  Subgrid Upscaling and Mixed Multiscale Finite Elements , 2006, SIAM J. Numer. Anal..

[11]  Thomas Y. Hou,et al.  Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients , 1999, Math. Comput..

[12]  H. Tchelepi,et al.  Multi-scale finite-volume method for elliptic problems in subsurface flow simulation , 2003 .

[13]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[14]  Stein Krogstad,et al.  A Hierarchical Multiscale Method for Two-Phase Flow Based upon Mixed Finite Elements and Nonuniform Coarse Grids , 2006, Multiscale Model. Simul..

[15]  M. Wheeler,et al.  Mixed Finite Elements for Elliptic Problems with Tensor Coefficients as Cell-Centered Finite Differences , 1997 .

[16]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[17]  Michael A. Heroux,et al.  Trilinos users guide. , 2003 .

[18]  Ivan Yotov,et al.  Implementation of a mortar mixed finite element method using a Multiscale Flux Basis , 2009 .

[19]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[20]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[21]  Gergina Pencheva,et al.  A Frozen Jacobian Multiscale Mortar Preconditioner for Nonlinear Interface Operators , 2012, Multiscale Model. Simul..

[22]  Gergina Pencheva,et al.  Balancing domain decomposition for mortar mixed finite element methods , 2003, Numer. Linear Algebra Appl..

[23]  Jonathan J. Hu,et al.  ML 5.0 Smoothed Aggregation Users's Guide , 2006 .

[24]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[25]  Mary F. Wheeler,et al.  Mortar coupling and upscaling of pore-scale models , 2008 .

[26]  Thomas Y. Hou,et al.  Convergence of a Nonconforming Multiscale Finite Element Method , 2000, SIAM J. Numer. Anal..

[27]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[28]  M. Wheeler,et al.  Multigrid on the interface for mortar mixed finite element methods for elliptic problems , 2000 .

[29]  Todd Arbogast,et al.  Mixed Finite Element Methods on Nonmatching Multiblock Grids , 2000, SIAM J. Numer. Anal..

[30]  Ivan Yotov,et al.  A multilevel Newton–Krylov interface solver for multiphysics couplings of flow in porous media , 2001, Numer. Linear Algebra Appl..

[31]  Ivan Yotov,et al.  Interface solvers and preconditioners of domain decomposition type for multiphase flow in multiblock porous media , 2001 .

[32]  Michael Andrew Christie,et al.  Tenth SPE Comparative Solution Project: a comparison of upscaling techniques , 2001 .

[33]  Sören Bartels,et al.  Numerical Approximation of Partial Differential Equations , 2016 .

[34]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[35]  Zhiming Chen,et al.  A mixed multiscale finite element method for elliptic problems with oscillating coefficients , 2003, Math. Comput..

[36]  Todd Arbogast,et al.  A Parallel Multiblock/Multidomain Approach for Reservoir Simulation , 1999 .

[37]  Mary F. Wheeler,et al.  Enhanced Velocity Mixed Finite Element Methods for Flow in Multiblock Domains , 2002 .

[38]  Mary F. Wheeler,et al.  Mortar Upscaling for Multiphase Flow in Porous Media , 2002 .

[39]  D. Arnold,et al.  Mixed and nonconforming finite element methods : implementation, postprocessing and error estimates , 1985 .

[40]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[41]  Yalchin Efendiev,et al.  Mixed Multiscale Finite Element Methods Using Limited Global Information , 2008, Multiscale Model. Simul..

[42]  Luc Giraud,et al.  A Set of GMRES Routines for Real and Complex Arithmetics , 1997 .

[43]  Ivan Yotov,et al.  Coupling Stokes--Darcy Flow with Transport , 2009, SIAM J. Sci. Comput..