Local persistence in the directed percolation universality class

We revisit the problem of local persistence in directed percolation, reporting improved estimates of the persistence exponent in 1+1 dimensions, discovering strong corrections to scaling in higher dimensions, and investigating the mean field limit. Moreover, we examine a graded persistence probability that a site does not flip more than m times and demonstrate how local persistence can be studied in seed simulations. Finally, the problem of spatial (as opposed to temporal) persistence is investigated.

[1]  Stefan Grosskinsky Warwick,et al.  Interacting Particle Systems , 2016 .

[2]  H. Hinrichsen Ageing in homogeneous systems at criticality , 2007, 0711.1106.

[3]  Roberto da Silva,et al.  Emerging collective behavior and local properties of financial dynamics in a public investment game , 2006 .

[4]  H. A. Fernandes,et al.  Global persistence exponent of the double-exchange model. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  A. Bray,et al.  Effect of shear on persistence in coarsening systems. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  A. A. Caparica,et al.  An alternative order parameter for the 4-state potts model , 2005, cond-mat/0509066.

[7]  S. Singha Persistence of surface fluctuations in radially growing surfaces , 2005 .

[8]  G. Schehr,et al.  Non-Markovian persistence in the diluted Ising model at criticality , 2005, cond-mat/0507445.

[9]  S. Sarma,et al.  Volatility, persistence, and survival in financial markets. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  S. Trimper,et al.  Persistence probabilities of the German DAX and Shanghai Index , 2005, nlin/0511048.

[11]  Roberto da Silva,et al.  Dynamic exponents of a probabilistic three-state cellular automaton , 2005 .

[12]  S. Roy,et al.  Persistence Exponents and Scaling In Two Dimensional XY model and A Nematic Model , 2005, cond-mat/0503566.

[13]  P. Sen,et al.  Zero temperature dynamics of Ising model on a densely connected small world network , 2005, cond-mat/0503138.

[14]  A. Bray,et al.  Survival of a diffusing particle in a transverse flow field , 2005, cond-mat/0502459.

[15]  P. Shukla Voter dynamics on an Ising ladder: coarsening and persistence , 2005, cond-mat/0501754.

[16]  S. Lubeck,et al.  UNIVERSAL SCALING BEHAVIOR OF NON-EQUILIBRIUM PHASE TRANSITIONS , 2004, cond-mat/0501259.

[17]  S. Majumdar,et al.  Persistence of randomly coupled fluctuating interfaces. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Roberto da Silva,et al.  Local persistence and blocking in the two-dimensional blume-capel model , 2004 .

[19]  P. Sen,et al.  Persistence and dynamics in the ANNNI chain , 2004, cond-mat/0411504.

[20]  F. Iglói,et al.  Nonequilibrium critical dynamics in inhomogeneous systems , 2004, cond-mat/0410432.

[21]  O. Bondarchuk,et al.  Sampling-time effects for persistence and survival in step structural fluctuations. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  A. Bray,et al.  Persistence in systems with conserved order parameter , 2004, cond-mat/0410031.

[23]  P. Sen,et al.  Probability distribution of persistent spins in an Ising chain , 2004, cond-mat/0406154.

[24]  H. Hinrichsen,et al.  Spreading with immunization in high dimensions , 2004, cond-mat/0405577.

[25]  A. Bray,et al.  LETTER TO THE EDITOR: Survival of a diffusing particle in a transverse shear flow: a first-passage problem with continuously varying persistence exponent , 2004, cond-mat/0405265.

[26]  S. Das Sarma,et al.  Mapping spatial persistent large deviations of nonequilibrium surface growth processes onto the temporal persistent large deviations of stochastic random walk processes. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  P. Ray Persistence in Extended Dynamical Systems , 2004, cond-mat/0403508.

[28]  S. Majumdar,et al.  Persistence in nonequilibrium surface growth. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  A Guide to First‐passage Processes , 2003 .

[30]  S. Majumdar,et al.  Persistence exponents and the statistics of crossings and occupation times for Gaussian stationary processes. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  R. Rajesh,et al.  Persistence properties of a system of coagulating and annihilating random walkers. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  H. Hinrichsen,et al.  Epidemic processes with immunization. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  H. Hinrichsen,et al.  Epidemic spreading with immunization and mutations. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  O. Bondarchuk,et al.  Infinite family of persistence exponents for interface fluctuations. , 2003, Physical review letters.

[35]  S. Majumdar,et al.  Persistence of manifolds in nonequilibrium critical dynamics. , 2003, Physical review letters.

[36]  N. Alves,et al.  Global persistence exponent of the two-dimensional Blume-Capel model. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  G. Manoj Persistence in q-state Potts model: a mean-field approach. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  R. N. C. Filho,et al.  Persistence in the zero-temperature dynamics of the random Ising ferromagnet on a Voronoi–Delaunay lattice , 2002, cond-mat/0211097.

[39]  B. Zheng PERSISTENCE PROBABILITY IN FINANCIAL DYNAMICS , 2002 .

[40]  G. I. Menon,et al.  Persistence at the onset of spatio-temporal intermittency in coupled map lattices , 2002, cond-mat/0208243.

[41]  P. Sen,et al.  Persistence in an antiferromagnetic Ising system with conserved magnetisation , 2002, cond-mat/0206112.

[42]  G. Ódor Universality classes in nonequilibrium lattice systems , 2002, cond-mat/0205644.

[43]  J. Timonen,et al.  Temporal and spatial persistence of combustion fronts in paper. , 2002, Physical review letters.

[44]  Sidney Redner,et al.  A guide to first-passage processes , 2001 .

[45]  M. A. Muñoz,et al.  Numerical study of persistence in models with absorbing states. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  S. Majumdar,et al.  Spatial persistence of fluctuating interfaces. , 2000, Physical review letters.

[47]  H. Hinrichsen Non-equilibrium critical phenomena and phase transitions into absorbing states , 2000, cond-mat/0001070.

[48]  J. Luck,et al.  Statistics of Persistent Events in the Binomial Random Walk: Will the Drunken Sailor Hit the Sober Man? , 1999, cond-mat/9905252.

[49]  R. Dickman,et al.  Nonequilibrium Phase Transitions in Lattice Models , 1999 .

[50]  C. Newman,et al.  Blocking and Persistence in the Zero-Temperature Dynamics of Homogeneous and Disordered Ising Models , 1999, cond-mat/9904208.

[51]  I. Ispolatov Persistence in systems with algebraic interaction. , 1998, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[52]  S. Majumdar,et al.  Analytical results for random walk persistence , 1998, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[53]  J. Krug,et al.  Persistence of Kardar-Parisi-Zhang interfaces , 1998, cond-mat/9809241.

[54]  J. Drouffe,et al.  STATIONARY DEFINITION OF PERSISTENCE FOR FINITE-TEMPERATURE PHASE ORDERING , 1998, cond-mat/9808153.

[55]  S. Majumdar,et al.  Persistence with Partial Survival , 1998, cond-mat/9805380.

[56]  F. Wijland,et al.  Global persistence in directed percolation , 1998, cond-mat/9805046.

[57]  C. Sire,et al.  Block persistence , 1998, cond-mat/9803014.

[58]  I. Dornic,et al.  Large deviations and nontrivial exponents in coarsening systems , 1997, cond-mat/9712178.

[59]  Michael Hennecke Survivors in the two-dimensional Potts model: zero-temperature dynamics for finite Q , 1997 .

[60]  H. Hinrichsen,et al.  Numerical study of local and global persistence in directed percolation , 1997, cond-mat/9711287.

[61]  Martin Howard,et al.  LETTER TO THE EDITOR: Persistence in the Voter model: continuum reaction-diffusion approach , 1997, cond-mat/9711148.

[62]  H. Hinrichsen,et al.  Identification of domain walls in coarsening systems at finite temperature , 1997, cond-mat/9710263.

[63]  S. Majumdar,et al.  Survival probability of a mobile particle in a fluctuating field , 1997, cond-mat/9707344.

[64]  C. Sire,et al.  Spin block persistence at finite temperature , 1997, cond-mat/9707287.

[65]  A. Rutenberg,et al.  Persistence, Poisoning, and Autocorrelations in Dilute Coarsening , 1997, cond-mat/9707228.

[66]  G. Ódor,et al.  Non-Markovian persistence at the parity conserving point of a one-dimensional nonequilibrium kinetic Ising model , 1997, cond-mat/9706083.

[67]  Damián H. Zanette,et al.  Persistence in Lévy-flight anomalous diffusion , 1997 .

[68]  B. Zheng,et al.  MONTE CARLO MEASUREMENT OF THE GLOBAL PERSISTENCE EXPONENT , 1997, cond-mat/9705232.

[69]  P. Krapivsky,et al.  Domain statistics in coarsening systems , 1997, cond-mat/9705155.

[70]  S. Majumdar,et al.  Persistence exponents for fluctuating interfaces , 1997, cond-mat/9704238.

[71]  D. Stauffer Universality of Derrida Coarsening in Ising Models , 1997 .

[72]  B. Derrida HOW TO EXTRACT INFORMATION FROM SIMULATIONS OF COARSENING AT FINITE TEMPERATURE , 1997 .

[73]  D. Zanette Distribution of persistent sites in diffusing systems , 1997 .

[74]  B. Derrida,et al.  Exact exponent for the number of persistent spins in the zero-temperature dynamics of the one-dimensional Potts model , 1996 .

[75]  S. Majumdar,et al.  Experimental Measurement of the Persistence Exponent of the Planar Ising Model , 1996, cond-mat/9611113.

[76]  D. Stauffer FLIPPING OF MAGNETIZATION IN ISING MODELS AT Tc , 1996 .

[77]  Cornell,et al.  Global Persistence Exponent for Nonequilibrium Critical Dynamics. , 1996, Physical review letters.

[78]  Hakim,et al.  Persistent Spins in the Linear Diffusion Approximation of Phase Ordering and Zeros of Stationary Gaussian Processes. , 1996, Physical review letters.

[79]  Cornell,et al.  Nontrivial Exponent for Simple Diffusion. , 1996, Physical review letters.

[80]  S. Majumdar,et al.  Survival Probability of a Gaussian Non-Markovian Process: Application to the T=0 Dynamics of the Ising Model. , 1996, Physical review letters.

[81]  P. Krapivsky,et al.  Coarsening and persistence in the voter model. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[82]  Hakim,et al.  Exact first-passage exponents of 1D domain growth: Relation to a reaction-diffusion model. , 1995, Physical review letters.

[83]  J. Cardy Proportion of unaffected sites in a reaction-diffusion process , 1994, cond-mat/9409045.

[84]  D. Stauffer Ising spinodal decomposition at T=O in one to five dimensions , 1994 .

[85]  B. Derrida,et al.  Non-Trivial Algebraic Decay in a Soluble Model of Coarsening , 1994 .

[86]  B. Derrida,et al.  Non-trivial exponents in the zero temperature dynamics of the 1D Ising and Potts models , 1994 .

[87]  H. Janssen Renormalized field theory of dynamical percolation , 1985 .

[88]  P Grassberger,et al.  Epidemic models and percolation , 1985 .

[89]  Eytan Domany,et al.  Equivalence of Cellular Automata to Ising Models and Directed Percolation , 1984 .

[90]  J. Cardy Field theoretic formulation of an epidemic process with immunisation , 1983 .

[91]  Joan Adler,et al.  Percolation Structures and Processes , 1983 .

[92]  H. Janssen,et al.  On the nonequilibrium phase transition in reaction-diffusion systems with an absorbing stationary state , 1981 .

[93]  P. Grassberger,et al.  Reggeon field theory (Schlögl's first model) on a lattice: Monte Carlo calculations of critical behaviour , 1979 .

[94]  Nino Boccara,et al.  Phase Transitions in Cellular Automata , 2009, Encyclopedia of Complexity and Systems Science.

[95]  J. Bouchaud,et al.  Statistics of persistent events: An exactly soluble model , 1999 .