An accurate finite-volume formulation of a Residual-Based Compact scheme for unsteady compressible flows

Abstract The paper discusses the design principles of a Finite-Volume Residual-Based Compact (RBC) scheme for the spatial discretization of the unsteady compressible governing equations of gas dynamics on general structured meshes. Our goal is to develop an accurate and robust approximation methodology, well suited for complex problems of industrial interest. The scheme makes use of weighted approximations that allow to ensure high accuracy while taking benefit from the structured nature of the grid. The accuracy and Cauchy stability properties of the proposed spatial approximation are discussed in detail. Numerical applications to unsteady compressible flows of increasing complexity demonstrate the advantages of the proposed formulation with respect to straightforward extensions of RBC schemes to curvilinear meshes.

[1]  Miguel R. Visbal,et al.  On the use of higher-order finite-difference schemes on curvilinear and deforming meshes , 2002 .

[2]  Rémi Abgrall,et al.  Residual distribution schemes: Current status and future trends , 2006 .

[3]  G. A. Gerolymos,et al.  Analysis and Application of Chorochronic Periodicity in Turbomachinery Rotor/Stator Interaction Computations , 2002 .

[4]  Christophe Eric Corre,et al.  A residual-based compact scheme for the compressible Navier-Stokes equations , 2001 .

[5]  H. C. Yee,et al.  Entropy Splitting and Numerical Dissipation , 2000 .

[6]  Christophe Eric Corre,et al.  Residual-based compact schemes for multidimensional hyperbolic systems of conservation laws , 2002 .

[7]  Jean-Pierre Croisille,et al.  Efficient Implementation of High Order Reconstruction in Finite Volume Methods , 2011 .

[8]  High-order residual-based compact schemes for aerodynamics and aeroacoustics , 2012 .

[9]  Dirk Pflüger,et al.  Lecture Notes in Computational Science and Engineering , 2010 .

[10]  R. Maccormack,et al.  Computational efficiency achieved by time splitting of finite difference operators. , 1972 .

[11]  C. Tam,et al.  Dispersion-relation-preserving finite difference schemes for computational acoustics , 1993 .

[12]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[13]  Alain Lerat,et al.  On the design of high order residual-based dissipation for unsteady compressible flows , 2013, J. Comput. Phys..

[14]  Alain Lerat,et al.  A third-order finite-volume residual-based scheme for the 2D Euler equations on unstructured grids , 2011, J. Comput. Phys..

[15]  Christophe Bailly,et al.  HIGH-ORDER CURVILINEAR SIMULATIONS OF FLOWS AROUND NON-CARTESIAN BODIES , 2004 .

[16]  Hester Bijl,et al.  Implicit Time Integration Schemes for the Unsteady Compressible Navier–Stokes Equations: Laminar Flow , 2002 .

[17]  Bernardo Cockburn,et al.  Nonlinearly stable compact schemes for shock calculations , 1994 .

[18]  Christophe Eric Corre,et al.  A residual-based compact scheme for the unsteady compressible Navier–Stokes equations , 2005 .

[19]  L. Cambier,et al.  elsA - An efficient object-oriented solution to CFD complexity , 2002 .

[20]  J. Fromm A method for reducing dispersion in convective difference schemes , 1968 .

[21]  A Comparison of Analytical Solutions of a High-Order RBC Scheme and Its Equivalent Differential Equation for a Steady Shock Problem , 2014 .

[22]  Martine Baelmans,et al.  A finite volume formulation of compact central schemes on arbitrary structured grids , 2004 .

[23]  Paola Cinnella,et al.  Third-order accurate finite volume schemes for Euler computations on curvilinear meshes , 2001 .

[24]  Andrea Arnone,et al.  Numerical investigation on wake shedding in a turbine rotor blade , 1997 .

[25]  Grégoire Hanss Schémas numériques compacts basés sur le résidu en maillage irrégulier pour les équations de Navier-Stokes en compressible , 2002 .

[26]  Gillyboeuf nsuy P J-PMansuy,et al.  Two new chimera methods - Application to missile separation , 1995 .

[27]  C. Williamson Vortex Dynamics in the Cylinder Wake , 1996 .

[28]  C. Bogey,et al.  A family of low dispersive and low dissipative explicit schemes for flow and noise computations , 2004 .

[29]  Alain Lerat Steady discrete shocks of high-order RBC schemes , 2013, J. Comput. Phys..

[30]  Laurent Cambier,et al.  Status of the elsA CFD Software for Flow Simulation and Multidisciplinary Applications , 2008 .

[31]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[32]  H. C. Yee,et al.  Explicit and Implicit Multidimensional Compact High-Resolution Shock-Capturing Methods , 1997 .

[33]  Christophe Eric Corre,et al.  Efficient High-order Schemes on Non-uniform Meshes for Multi-Dimensional Compressible Flows , 2001 .

[34]  Olof B. Widlund,et al.  A note on unconditionally stable linear multistep methods , 1967 .

[35]  G. Dahlquist A special stability problem for linear multistep methods , 1963 .

[36]  J. Lambert Numerical Methods for Ordinary Differential Systems: The Initial Value Problem , 1991 .

[37]  Datta V. Gaitonde,et al.  Optimized Compact-Difference-Based Finite-Volume Schemes for Linear Wave Phenomena , 1997 .

[38]  Alain Lerat,et al.  Spectral properties of high-order residual-based compact schemes for unsteady compressible flows , 2013, J. Comput. Phys..

[39]  Paola Cinnella,et al.  Multiblock residual-based compact schemes for the computation of complex turbomachinery flows , 2011 .

[40]  Marcelo H. Kobayashi,et al.  A fourth-order-accurate finite volume compact method for the incompressible Navier-Stokes solutions , 2001 .

[41]  Rémi Abgrall,et al.  A simple construction of very high order non-oscillatory compact schemes on unstructured meshes , 2009 .

[42]  Christopher L. Rumsey,et al.  Computation of Vortex Shedding and Radiated Sound for a Circular Cylinder: Subcritical to Transcritical Reynolds Numbers , 1998 .

[43]  M. Vinokur,et al.  An analysis of finite-difference and finite-volume formulations of conservation laws , 1986 .

[44]  D. Gottlieb,et al.  Phase Error and Stability of Second Order Methods for Hyperbolic Problems. II , 1974 .

[45]  S. Balachandar,et al.  Effect of three‐dimensionality on the lift and drag of nominally two‐dimensional cylinders , 1995 .

[46]  Miguel R. Visbal,et al.  High-Order-Accurate Methods for Complex Unsteady Subsonic Flows , 1999 .

[47]  F. Martelli,et al.  Investigation of the Unsteady Rotor Aerodynamics in a Transonic Turbine Stage , 2000 .

[48]  Mamoru Inouye,et al.  Time-Split Finite-Volume Method for Three-Dimensional Blunt-Body Flow , 1973 .

[49]  Marcelo H. Kobayashi,et al.  Regular Article: On a Class of Padé Finite Volume Methods , 1999 .

[50]  F. Nicoud,et al.  Compact finite difference schemes on non-uniform meshes. Application to direct numerical simulations of compressible flows , 1999 .

[51]  F. Lehthaus,et al.  The Transonic Flow Through a Plane Turbine Cascade as Measured in Four European Wind Tunnels , 1986 .

[52]  Michele Napolitano,et al.  An Implicit Fluctuation Splitting Scheme for Turbomachinery Flows , 2005 .

[53]  Herman Deconinck,et al.  Residual distribution for general time-dependent conservation laws , 2005 .