Spatio-temporal distribution of escape time in evacuation process

[1]  Helbing,et al.  Social force model for pedestrian dynamics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[2]  D. Wolf,et al.  Traffic and Granular Flow , 1996 .

[3]  T. Nagatani,et al.  Jamming transition in pedestrian counter flow , 1999 .

[4]  A. Schadschneider,et al.  Statistical physics of vehicular traffic and some related systems , 2000, cond-mat/0007053.

[5]  T. Nagatani,et al.  Jamming transition in two-dimensional pedestrian traffic , 2000 .

[6]  Dirk Helbing,et al.  Simulating dynamical features of escape panic , 2000, Nature.

[7]  Vicsek,et al.  Freezing by heating in a driven mesoscopic system , 1999, Physical review letters.

[8]  T. Nagatani,et al.  Jamming transition of pedestrian traffic at a crossing with open boundaries , 2000 .

[9]  Boris S. Kerner,et al.  Complexity of Synchronized Flow and Related Problems for Basic Assumptions of Traffic Flow Theories , 2001 .

[10]  T. Nagatani,et al.  Scaling of pedestrian channel flow with a bottleneck , 2001 .

[11]  T. Nagatani,et al.  Scaling behavior of crowd flow outside a hall , 2001 .

[12]  T. Nagatani Dynamical transition and scaling in a mean-field model of pedestrian flow at a bottleneck , 2001 .

[13]  D. Helbing Traffic and related self-driven many-particle systems , 2000, cond-mat/0012229.

[14]  Takashi Nagatani,et al.  Optimal admission time for shifting the audience , 2002 .

[15]  T. Nagatani,et al.  Clogging transition of pedestrian flow in T-shaped channel , 2002 .

[16]  Andreas Schadschneider,et al.  Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics , 2002 .

[17]  T. Nagatani The physics of traffic jams , 2002 .