What Does Digital Straightness Tell about Digital Convexity?

The paper studies local convexity properties of parts of digital boundaries. An online and linear-time algorithm is introduced for the decomposition of a digital boundary into convex and concave parts. In addition, other data are computed at the same time without any extra cost: the hull of each convex or concave part as well as the Bezout points of each edge of those hulls. The proposed algorithm involves well-understood algorithms: adding a point to the front or removing a point from the back of a digital straight segment and computing the set of maximal segments. The output of the algorithm is useful either for a polygonal representation of digital boundaries or for a segmentation into circular arcs.

[1]  Fabien Feschet,et al.  Canonical representations of discrete curves , 2005, Pattern Analysis and Applications.

[2]  Isabelle Debled-Rennesson,et al.  Detection of the discrete convexity of polyominoes , 2000, Discret. Appl. Math..

[3]  Jean-Pierre Reveillès Géométrie discrète, calcul en nombres entiers et algorithmique , 1991 .

[4]  Gabriella Sanniti di Baja,et al.  Visual Form 2001 , 2001, Lecture Notes in Computer Science.

[5]  Ulrich Eckhardt,et al.  Polygonal Representations of Digital Sets , 2003, Algorithmica.

[6]  Ulrich Eckhardt Digital Lines and Digital Convexity , 2000, Digital and Image Geometry.

[7]  Atsushi Imiya,et al.  Digital and Image Geometry , 2002, Lecture Notes in Computer Science.

[8]  Atsushi Imiya,et al.  Digital and Image Geometry, Advanced Lectures [based on a winter school held at Dagstuhl Castle, Germany in December 2000] , 2001 .

[9]  Isabelle Debled-Rennesson,et al.  A Linear Algorithm for Segmentation of Digital Curves , 1995, Int. J. Pattern Recognit. Artif. Intell..

[10]  Laure Tougne,et al.  Optimal Time Computation of the Tangent of a Discrete Curve: Application to the Curvature , 1999, DGCI.

[11]  François de Vieilleville,et al.  Fast, accurate and convergent tangent estimation on digital contours , 2007, Image Vis. Comput..

[12]  Laure Tougne,et al.  An elementary algorithm for digital arc segmentation , 2001, Electron. Notes Theor. Comput. Sci..

[13]  H. Dorksen-Reiter,et al.  Convex and Concave Parts of digital Curves , 2006 .

[14]  Reinhard Klette,et al.  A Comparative Evaluation of Length Estimators of Digital Curves , 2004, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Laure Tougne,et al.  Discrete Curvature Based on Osculating Circle Estimation , 2001, IWVF.

[16]  Laure Tougne,et al.  On the min DSS problem of closed discrete curves , 2003, Discret. Appl. Math..

[17]  François de Vieilleville,et al.  Maximal digital straight segments and convergence of discrete geometric estimators , 2005, SCIA.

[18]  Isabelle Debled-Rennesson,et al.  Detection of the discrete convexity of polyominoes , 2003, Discret. Appl. Math..

[19]  Jack Sklansky,et al.  Minimum-Perimeter Polygons of Digitized Silhouettes , 1972, IEEE Transactions on Computers.

[20]  François de Vieilleville,et al.  Convex Digital Polygons, Maximal Digital Straight Segments and Convergence of Discrete Geometric Estimators , 2007, Journal of Mathematical Imaging and Vision.

[21]  Isabelle Debled-Rennesson,et al.  A Linear Algorithm for Polygonal Representations of Digital Sets , 2006, IWCIA.