The ISM scaling relations in DustPedia late-type galaxies: A benchmark study for the Local Universe

Aims. The purpose of this work is the characterization of the main scaling relations between all of the interstellar medium (ISM) components, namely dust, atomic, molecular, and total gas, and gas-phase metallicity, as well as other galaxy properties, such as stellar mass (Mstar) and galaxy morphology, for late-type galaxies in the Local Universe. Methods. This study was performed by extracting late-type galaxies from the entire DustPedia sample and by exploiting the large and homogeneous dataset available thanks to the DustPedia project. The sample consists of 436 galaxies with morphological stage spanning from T = 1−10, Mstar from 6 × 107 to 3 × 1011 M⊙, star formation rate from 6 × 10−4 to 60 M⊙ yr−1, and oxygen abundance from 12 + log(O/H) = 8−9.5. Molecular and atomic gas data were collected from the literature and properly homogenized. All the masses involved in our analysis refer to the values within the optical disks of galaxies. The scaling relations involving the molecular gas are studied by assuming both a constant and a metallicity-dependent CO-to-H2 conversion factor (XCO). The analysis was performed by means of the survival analysis technique, in order to properly take into account the presence of both detection and nondetection in the data. Results. We confirm that the dust mass correlates very well with the total gas mass, and find –for the first time– that the dust mass correlates better with the atomic gas mass than with the molecular one. We characterize important mass ratios such as the gas fraction, the molecular-to-atomic gas mass ratio, the dust-to-total gas mass ratio (DGR), and the dust-to-stellar mass ratio, and study how they relate to each other, to galaxy morphology, and to gas-phase metallicity. Only the assumption of a metallicity-dependent XCO reproduces the expected decrease of the DGR with increasing morphological stage and decreasing gas-phase metallicity, with a slope of about 1. The DGR, the gas-phase metallicity, and the dust-to-stellar mass ratio are, for our galaxy sample, directly linked to galaxy morphology. The molecular-to-atomic gas mass ratio and the DGR show a positive correlation for low molecular gas fractions, but for galaxies rich in molecular gas this trend breaks down. To our knowledge, this trend has never been found before, and provides new constraints for theoretical models of galaxy evolution and a reference for high-redshift studies. We discuss several scenarios related to this finding. Conclusions. The DustPedia database of late-type galaxies is an extraordinary tool for the study of the ISM scaling relations, thanks to its homogeneous collection of data for the different ISM components. The database is made publicly available to the whole community.

[1]  L. Ho,et al.  Dirt-cheap Gas Scaling Relations: Using Dust Absorption, Metallicity, and Galaxy Size to Predict Gas Masses for Large Samples of Galaxies , 2019, The Astrophysical Journal.

[2]  Naoko Matsumoto,et al.  CO multi-line imaging of nearby galaxies (COMING). IV. Overview of the project , 2019, Publications of the Astronomical Society of Japan.

[3]  A. Jones,et al.  Dust emissivity and absorption cross section in DustPedia late-type galaxies , 2019, Astronomy & Astrophysics.

[4]  R. Maiolino,et al.  The ALMaQUEST Survey: The Molecular Gas Main Sequence and the Origin of the Star-forming Main Sequence , 2019, The Astrophysical Journal.

[5]  A. Jones,et al.  The first maps of κd – the dust mass absorption coefficient – in nearby galaxies, with DustPedia , 2019, Monthly Notices of the Royal Astronomical Society.

[6]  N. Neumayer,et al.  Star Formation Efficiencies at Giant Molecular Cloud Scales in the Molecular Disk of the Elliptical Galaxy NGC 5128 (Centaurus A) , 2019, The Astrophysical Journal.

[7]  M. Yun,et al.  CO observations of major merger pairs at z =  0: molecular gas mass and star formation , 2019, Astronomy & Astrophysics.

[8]  P. Duc,et al.  Molecular gas content of shell galaxies , 2019, Astronomy & Astrophysics.

[9]  A. Jones,et al.  Old and young stellar populations in DustPedia galaxies and their role in dust heating , 2019, Astronomy & Astrophysics.

[10]  L. Hernquist,et al.  Atomic and molecular gas in IllustrisTNG galaxies at low redshift , 2019, Monthly Notices of the Royal Astronomical Society.

[11]  P. Hopkins,et al.  Interacting galaxies on FIRE-2: the connection between enhanced star formation and interstellar gas content , 2019, Monthly Notices of the Royal Astronomical Society.

[12]  A. Jones,et al.  A systematic metallicity study of DustPedia galaxies reveals evolution in the dust-to-metal ratios , 2019, Astronomy & Astrophysics.

[13]  A. Jones,et al.  Dust emission profiles of DustPedia galaxies , 2018, Astronomy & Astrophysics.

[14]  D. Corre,et al.  CIGALE: a python Code Investigating GALaxy Emission , 2018, Astronomy & Astrophysics.

[15]  B. M'enard,et al.  Extragalactic Imprints in Galactic Dust Maps , 2018, The Astrophysical Journal.

[16]  R. Kennicutt,et al.  Metals and dust content across the galaxies M 101 and NGC 628 , 2018, Monthly Notices of the Royal Astronomical Society.

[17]  L. Hernquist,et al.  Atomic hydrogen in IllustrisTNG galaxies: the impact of environment parallelled with local 21-cm surveys , 2018, Monthly Notices of the Royal Astronomical Society.

[18]  A. Jones,et al.  Fraction of bolometric luminosity absorbed by dust in DustPedia galaxies , 2018, Astronomy & Astrophysics.

[19]  A. Babul,et al.  Cold gas in a complete sample of group-dominant early-type galaxies , 2018, Astronomy & Astrophysics.

[20]  M. Vogelsberger,et al.  Simulating galactic dust grain evolution on a moving mesh , 2018, 1805.04521.

[21]  Di Li,et al.  H i Observations of Major-merger Pairs at z = 0: Atomic Gas and Star Formation , 2018, The Astrophysical Journal Supplement Series.

[22]  E. Ostriker,et al.  The XCO Conversion Factor from Galactic Multiphase ISM Simulations , 2018, 1803.09822.

[23]  V. Avila-Reese,et al.  The $HI$- and $H_{2}$-to-stellar mass correlations of late- and early-type galaxies and their consistency with the observational mass functions , 2018, 1803.07692.

[24]  D. Schiminovich,et al.  xGASS: total cold gas scaling relations and molecular-to-atomic gas ratios of galaxies in the local Universe , 2018, 1802.02373.

[25]  C. Kramer,et al.  Spatially resolving the dust properties and submillimetre excess in M 33 , 2018, 1801.04806.

[26]  A. Jones,et al.  The Interstellar Dust Properties of Nearby Galaxies , 2017, Annual Review of Astronomy and Astrophysics.

[27]  K. Menten,et al.  Galactocentric variation of the gas-to-dust ratio and its relation with metallicity , 2017, 1710.05721.

[28]  M. Lehnert,et al.  Bar quenching in gas-rich galaxies , 2017, 1709.03604.

[29]  A. Jones,et al.  DustPedia: Multiwavelength Photometry and Imagery of 875 Nearby Galaxies in 42 Ultraviolet--Microwave Bands , 2017, 1708.05335.

[30]  A. Fontana,et al.  The Star Formation Main Sequence in the Hubble Space Telescope Frontier Fields , 2017, 1706.07059.

[31]  University College London,et al.  Radial distribution of dust, stars, gas, and star-formation rate in DustPedia face-on galaxies , 2017, 1706.05351.

[32]  S. Maddox,et al.  Using dust, gas and stellar mass-selected samples to probe dust sources and sinks in low-metallicity galaxies , 2017, 1705.02340.

[33]  A. Weiss,et al.  Physical conditions of the molecular gas in metal-poor galaxies , 2017, 1704.05252.

[34]  D. Elbaz,et al.  Molecular gas, dust, and star formation in galaxies: I. Dust properties and scalings in ~ 1600 nearby galaxies , 2017, 1703.09829.

[35]  L. Galbany,et al.  The Mass-Metallicity Relation revisited with CALIFA , 2017, 1703.09769.

[36]  D. Marshall,et al.  Cosmic rays, gas and dust in nearby anticentre clouds : I -- CO-to-H2 conversion factors and dust opacities , 2017, 1703.05237.

[37]  L. Verstraete,et al.  The global dust modelling framework THEMIS (The Heterogeneous dust Evolution Model for Interstellar Solids) , 2017, 1703.00775.

[38]  R. Davé,et al.  Deriving a multivariate αCO conversion function using the [C ii]/CO (1−0) ratio and its application to molecular gas scaling relations , 2017, 1702.03888.

[39]  G. Cresci,et al.  The dust-to-stellar mass ratio as a valuable tool to probe the evolution of local and distant star-forming galaxies , 2016, 1610.08979.

[40]  S. Maddox,et al.  Herschel-ATLAS: Revealing dust build-up and decline across gas, dust and stellar mass selected samples - I. Scaling relations , 2016, 1610.01038.

[41]  R. Somerville,et al.  The dust content of galaxies from z = 0 to z = 9 , 2016, 1609.08622.

[42]  K. Nagamine,et al.  Galaxy Simulation with Dust Formation and Destruction , 2016, 1609.07547.

[43]  R. Bower,et al.  The EAGLE simulations: atomic hydrogen associated with galaxies , 2016, 1604.06803.

[44]  S. White,et al.  Properties of H i discs in the Auriga cosmological simulations , 2016, 1610.01594.

[45]  M. Xilouris,et al.  DustPedia: A Definitive Study of Cosmic Dust in the Local Universe , 2016, 1609.06138.

[46]  R. Giovanelli,et al.  Molecular and atomic gas along and across the main sequence of star-forming galaxies , 2016, 1607.05289.

[47]  J. Schaye,et al.  Far-infrared and dust properties of present-day galaxies in the EAGLE simulations , 2016, 1607.04402.

[48]  M. Boquien,et al.  The selective effect of environment on the atomic and molecular gas-to-dust ratio of nearby galaxies in the Herschel Reference Survey , 2016, 1604.01505.

[49]  Austria,et al.  CLASH-VLT: Strangulation of cluster galaxies in MACSJ0416.1-2403 as seen from their chemical enrichment , 2016, 1602.00686.

[50]  J. Aguerri,et al.  Molecular gas in low-metallicity starburst galaxies: - Scaling relations and the CO-to-H2 conversion factor , 2015, 1512.06153.

[51]  G. Kauffmann,et al.  The distribution of atomic hydrogen in EAGLE galaxies : morphologies, profiles, and H I holes , 2015, 1511.04909.

[52]  S. E. Persson,et al.  THE SFR–M* RELATION AND EMPIRICAL STAR FORMATION HISTORIES FROM ZFOURGE AT 0.5 < z < 4 , 2015, 1510.06072.

[53]  K. Menten,et al.  Molecular depletion times and the CO-to-H2 conversion factor in metal-poor galaxies , 2015, 1509.04870.

[54]  J. Cepa,et al.  THE ARIZONA RADIO OBSERVATORY SURVEY OF MOLECULAR GAS IN NEARBY NORMAL SPIRAL GALAXIES I: THE DATA , 2015 .

[55]  R. Davé,et al.  ON THE MASS–METALLICITY–STAR FORMATION RATE RELATION FOR GALAXIES AT z∼2 , 2015, 1506.03080.

[56]  F. Combes,et al.  The resolved star-formation relation in nearby active galactic nuclei , 2015, 1503.00280.

[57]  S. Maddox,et al.  Herschel-ATLAS: the surprising diversity of dust-selected galaxies in the local submillimetre Universe , 2015, Monthly Notices of the Royal Astronomical Society.

[58]  R. Feldmann The equilibrium view on dust and metals in galaxies: Galactic outflows drive low dust-to-metal ratios in dwarf galaxies , 2014, 1412.2755.

[59]  B. Garilli,et al.  The evolving star formation rate: M⋆ relation and sSFR since z ≃ 5 from the VUDS spectroscopic survey , 2014, 1411.5687.

[60]  S. Glover,et al.  DUST AND GAS IN THE MAGELLANIC CLOUDS FROM THE HERITAGE HERSCHEL KEY PROJECT. II. GAS-TO-DUST RATIO VARIATIONS ACROSS INTERSTELLAR MEDIUM PHASES , 2014, 1411.4552.

[61]  S. Lilly,et al.  The mass-metallicity relation of zCOSMOS galaxies at z ~ 0.7, its dependence on SFR, and the existence of massive low-metallicity galaxies , 2014, 1410.7389.

[62]  D. Calzetti,et al.  Cool dust heating and temperature mixing in nearby star-forming galaxies , 2014, 1409.5916.

[63]  D. Elbaz,et al.  The Herschel view of the dominant mode of galaxy growth from z = 4 to the present day , 2014, 1409.5433.

[64]  Megan C. Johnson,et al.  THE H i CHRONICLES OF LITTLE THINGS BCDs II: THE ORIGIN OF IC 10's H i STRUCTURE , 2014, 1409.5406.

[65]  P. Prugniel,et al.  HyperLEDA. III. The catalogue of extragalactic distances , 2014, 1408.3476.

[66]  G. Brammer,et al.  CONSTRAINING THE LOW-MASS SLOPE OF THE STAR FORMATION SEQUENCE AT 0.5 < z < 2.5 , 2014, 1407.1843.

[67]  S. Lilly,et al.  THE MASS–METALLICITY AND FUNDAMENTAL METALLICITY RELATIONS AT z > 2 USING VERY LARGE TELESCOPE AND SUBARU NEAR-INFRARED SPECTROSCOPY OF zCOSMOS GALAXIES , 2014, 1406.6069.

[68]  A. Cimatti,et al.  A multiwavelength consensus on the main sequence of star-forming galaxies at z ~ 2 , 2014, 1406.1189.

[69]  J. Silverman,et al.  A HIGHLY CONSISTENT FRAMEWORK FOR THE EVOLUTION OF THE STAR-FORMING “MAIN SEQUENCE” FROM z ∼ 0–6 , 2014, 1405.2041.

[70]  J. Brinchmann,et al.  An observational and theoretical view of the radial distribution of H I gas in galaxies , 2014, 1401.8164.

[71]  M. Boquien,et al.  Cold gas properties of the Herschel Reference Survey - I. 12CO(1–0) and HI data , 2014, 1401.7773.

[72]  Svitlana Zhukovska,et al.  Dust origin in late-type dwarf galaxies: ISM growth vs. type II supernovae , 2014, 1401.1675.

[73]  N. Abel,et al.  The molecular gas reservoir of 6 low-metallicity galaxies from the Herschel Dwarf Galaxy Survey - A ground-based follow-up survey of CO(1–0), CO(2–1), and CO(3–2) , 2014, 1401.0563.

[74]  G. J. Bendo,et al.  Gas-to-dust mass ratios in local galaxies over a 2 dex metallicity range , 2013, 1312.3442.

[75]  F. Mannucci,et al.  The evolution of the dust and gas content in galaxies , 2013, 1311.3670.

[76]  M. Sauvage,et al.  ALMA observations of cool dust in a low-metallicity starburst, SBS0335-052 , 2013, 1312.0944.

[77]  A. Bolatto,et al.  CARMA SURVEY TOWARD INFRARED-BRIGHT NEARBY GALAXIES (STING). III. THE DEPENDENCE OF ATOMIC AND MOLECULAR GAS SURFACE DENSITIES ON GALAXY PROPERTIES , 2013, 1309.6513.

[78]  P. McCarthy,et al.  LOW MASSES AND HIGH REDSHIFTS: THE EVOLUTION OF THE MASS–METALLICITY RELATION , 2013, 1309.4458.

[79]  S. Maddox,et al.  Herschel-ATLAS: correlations between dust and gas in local submm-selected galaxies , 2013, 1308.4406.

[80]  D. Schiminovich,et al.  The GALEX Arecibo SDSS Survey - VIII. Final data release. The effect of group environment on the gas content of massive galaxies , 2013, 1308.1676.

[81]  M. Bershady,et al.  The DiskMass Survey VII. The distribution of luminous and dark matter in spiral galaxies , 2013, 1308.0336.

[82]  H. Roussel,et al.  An Overview of the Dwarf Galaxy Survey , 2013, 1305.2628.

[83]  R. B. Partridge,et al.  Dust and star formation properties of a complete sample of local galaxies drawn from the Planck Early Release Compact Source Catalogue , 2013, 1305.1647.

[84]  A. Leroy,et al.  THE FUELING DIAGRAM: LINKING GALAXY MOLECULAR-TO-ATOMIC GAS RATIOS TO INTERACTIONS AND ACCRETION , 2013, 1304.4245.

[85]  Qi Guo,et al.  EVOLUTION OF GALAXIES AND THEIR ENVIRONMENTS AT z = 0.1–3 IN COSMOS , 2013, 1303.6689.

[86]  J. Brinchmann,et al.  The Bluedisks project, a study of unusually H I-rich galaxies - I. H I sizes and morphology , 2013, 1303.3538.

[87]  G. Gavazzi,et al.  Hα3: an Hα imaging survey of HI selected galaxies from ALFALFA - II. Star formation properties of galaxies in the Virgo cluster and surroundings , 2013, 1303.2846.

[88]  A. Bolatto,et al.  The CO-to-H2 Conversion Factor , 2013, 1301.3498.

[89]  E. Pellegrini,et al.  THE CO-TO-H2 CONVERSION FACTOR AND DUST-TO-GAS RATIO ON KILOPARSEC SCALES IN NEARBY GALAXIES , 2012, 1212.1208.

[90]  R. Maiolino,et al.  Scaling relations of metallicity, stellar mass and star formation rate in metal-poor starbursts — II. Theoretical models , 2012, 1209.1103.

[91]  G. Jogesh Babu,et al.  Modern Statistical Methods for Astronomy: With R Applications , 2012 .

[92]  L. Blitz,et al.  A UNIVERSAL NEUTRAL GAS PROFILE FOR NEARBY DISK GALAXIES , 2012, 1208.1505.

[93]  D. Schiminovich,et al.  The GALEX Arecibo SDSS Survey - VI. Second data release and updated gas fraction scaling relations , 2012, 1206.3059.

[94]  D. L. Clements,et al.  The JCMT Nearby Galaxies Legacy Survey - VIII. CO data and the L -L correlation in the SINGS sample , 2012, 1206.1629.

[95]  M. Baes,et al.  The Herschel Virgo Cluster Survey: X.The relationship between cold dust and molecular gas content in Virgo spirals , 2012, 1204.4628.

[96]  C. Kramer,et al.  LOW CO LUMINOSITIES IN DWARF GALAXIES , 2012, 1203.4231.

[97]  D. Schiminovich,et al.  COLD GASS, an IRAM legacy survey of molecular gas in massive galaxies – III. Comparison with semi-analytic models of galaxy formation , 2012, 1202.2972.

[98]  P. P. van der Werf,et al.  THE MOLECULAR GAS IN LUMINOUS INFRARED GALAXIES. II. EXTREME PHYSICAL CONDITIONS AND THEIR EFFECTS ON THE Xco FACTOR , 2012, 1202.1803.

[99]  D. Clements,et al.  The dust scaling relations of the Herschel Reference Survey , 2012, 1201.2762.

[100]  E. Ostriker,et al.  A general model for the CO–H2 conversion factor in galaxies with applications to the star formation law , 2011, 1110.3791.

[101]  A. Bolatto,et al.  CARMA SURVEY TOWARD INFRARED-BRIGHT NEARBY GALAXIES (STING). II. MOLECULAR GAS STAR FORMATION LAW AND DEPLETION TIME ACROSS THE BLUE SEQUENCE , 2011, 1110.1630.

[102]  L. Verdes-Montenegro,et al.  The AMIGA sample of isolated galaxies - IX. Molecular gas properties , 2011, 1108.2130.

[103]  Christine D. Wilson,et al.  OBSERVATIONS OF Arp 220 USING HERSCHEL-SPIRE: AN UNPRECEDENTED VIEW OF THE MOLECULAR GAS IN AN EXTREME STAR FORMATION ENVIRONMENT , 2011, 1106.5054.

[104]  B. Weiner,et al.  THE METALLICITY DEPENDENCE OF THE CO → H2 CONVERSION FACTOR IN z ⩾ 1 STAR-FORMING GALAXIES , 2011, 1106.2098.

[105]  M. Baes,et al.  The Herschel Virgo Cluster Survey - IX. Dust-to-gas mass ratio and metallicity gradients in four Virgo spiral galaxies , 2011, 1106.0618.

[106]  C. Kramer,et al.  A MOLECULAR STAR FORMATION LAW IN THE ATOMIC-GAS-DOMINATED REGIME IN NEARBY GALAXIES , 2011, 1105.4605.

[107]  Durham,et al.  Cosmic evolution of the atomic and molecular gas contents of galaxies , 2011, 1105.2294.

[108]  R. Giovanelli,et al.  COLD GASS, an IRAM legacy survey of molecular gas in massive galaxies - II. The non-universality of the molecular gas depletion time-scale , 2011, 1104.0019.

[109]  L. Cortese,et al.  The effect of the environment on the Hi scaling relations , 2011, 1103.5889.

[110]  K. Finlator,et al.  Galaxy evolution in cosmological simulations with outflows ― I. Stellar masses and star formation rates , 2011, 1103.3528.

[111]  R. Giovanelli,et al.  COLD GASS, an IRAM legacy survey of molecular gas in massive galaxies – I. Relations between H2, H i, stellar content and structural properties , 2011, 1103.1642.

[112]  S. García-Burillo,et al.  Molecular gas in NUclei of GAlaxies (NUGA) XV. Molecular gas kinematics in the inner 3 kpc of NGC 6951 , 2011, 1102.5104.

[113]  Norikazu Mizuno,et al.  THE CO-TO-H2 CONVERSION FACTOR FROM INFRARED DUST EMISSION ACROSS THE LOCAL GROUP , 2011, 1102.4618.

[114]  K. Alatalo,et al.  The ATLAS3D project – IV. The molecular gas content of early-type galaxies , 2011, 1102.4633.

[115]  S. García-Burillo,et al.  Molecular Gas in NUclei of GAlaxies (NUGA) XIV. The barred LINER/Seyfert 2 galaxy NGC 3627 ? , 2011, 1101.2626.

[116]  Durham,et al.  On the impact of empirical and theoretical star formation laws on galaxy formation , 2010, 1011.5506.

[117]  Jr.,et al.  OPTICAL SPECTROSCOPY AND NEBULAR OXYGEN ABUNDANCES OF THE SPITZER/SINGS GALAXIES , 2010, 1007.4547.

[118]  G. Gavazzi,et al.  The Herschel Virgo Cluster Survey , 2017 .

[119]  Christopher F. McKee,et al.  THE DARK MOLECULAR GAS , 2010, 1004.5401.

[120]  G. Kauffmann,et al.  The atomic-to-molecular transition and its relation to the scaling properties of galaxy discs in the local Universe , 2010, 1004.2325.

[121]  B. Garilli,et al.  MASS AND ENVIRONMENT AS DRIVERS OF GALAXY EVOLUTION IN SDSS AND zCOSMOS AND THE ORIGIN OF THE SCHECHTER FUNCTION , 2010, 1003.4747.

[122]  S. Glover,et al.  On the relationship between molecular hydrogen and carbon monoxide abundances in molecular clouds , 2010, 1003.1340.

[123]  M. Sauvage,et al.  Radial distribution of gas and dust in spiral galaxies , 2010, 1005.5476.

[124]  S. Charlot,et al.  New insight into the relation between star formation activity and dust content in galaxies , 2010, 1001.2309.

[125]  G. Granato,et al.  Two phase galaxy formation: The Gas Content of Normal Galaxies , 2009, 0906.4115.

[126]  Firenze,et al.  Molecular gas in NUclei of GAlaxies (NUGA) XIII. The interacting Seyfert 2/LINER galaxy NGC 5953 , 2009, 0911.3772.

[127]  V. Buat,et al.  Analysis of galaxy spectral energy distributions from far-UV to far-IR with CIGALE: studying a SINGS test sample , 2009, 0909.5439.

[128]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[129]  Laboratoire d'Astrophysique de Marseille,et al.  RADIAL DISTRIBUTION OF STARS, GAS, AND DUST IN SINGS GALAXIES. II. DERIVED DUST PROPERTIES , 2009, 0909.2658.

[130]  C. Baugh,et al.  The redshift evolution of the mass function of cold gas in hierarchical galaxy formation models , 2009, 0908.1396.

[131]  R. Neri,et al.  Molecular gas in NUclei of GAlaxies (NUGA) - XII. The head-on collision in NGC 1961 , 2009, 0906.2493.

[132]  E. Brinks,et al.  HERACLES: THE HERA CO LINE EXTRAGALACTIC SURVEY , 2009, 0905.4742.

[133]  Edward B. Jenkins,et al.  A UNIFIED REPRESENTATION OF GAS-PHASE ELEMENT DEPLETIONS IN THE INTERSTELLAR MEDIUM , 2009, 0905.3173.

[134]  Bernardo Cervantes-Sodi,et al.  Chemical abundances and gas content in disk galaxies: correlations with the λ spin parameter , 2009 .

[135]  Cosmology,et al.  ORIGIN AND EVOLUTION OF THE ABUNDANCE GRADIENT ALONG THE MILKY WAY DISK , 2009, 0902.1014.

[136]  C. McKee,et al.  THE ATOMIC-TO-MOLECULAR TRANSITION IN GALAXIES. II: H i AND H2 COLUMN DENSITIES , 2008, 0811.0004.

[137]  A. Dutton,et al.  The impact of feedback on disc galaxy scaling relations , 2008, 0810.4963.

[138]  A. Dutton On the origin of exponential galaxy discs , 2008, 0810.5164.

[139]  Nickolay Y. Gnedin,et al.  MODELING MOLECULAR HYDROGEN AND STAR FORMATION IN COSMOLOGICAL SIMULATIONS , 2008, 0810.4148.

[140]  B. Madore,et al.  THE STAR FORMATION EFFICIENCY IN NEARBY GALAXIES: MEASURING WHERE GAS FORMS STARS EFFECTIVELY , 2008, 0810.2556.

[141]  B. Madore,et al.  THE STAR FORMATION LAW IN NEARBY GALAXIES ON SUB-KPC SCALES , 2008, 0810.2541.

[142]  Astronomy,et al.  Molecular Gas in NUclei of GAlaxies (NUGA). X. The Seyfert 2 galaxy NGC 3147 , 2008, 0808.1186.

[143]  Adam K. Leroy,et al.  The Resolved Properties of Extragalactic Giant Molecular Clouds , 2008, Proceedings of the International Astronomical Union.

[144]  B. Gibson,et al.  Simulating the mass-metallicity relation from z ∼ 1 , 2008, 0801.2476.

[145]  D. Erb Accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 A MODEL FOR STAR FORMATION, GAS FLOWS AND CHEMICAL EVOLUTION IN GALAXIES AT HIGH REDSHIFTS , 2022 .

[146]  G. Kauffmann,et al.  Chemical evolution of galaxies in the Millennium Simulation: comparison between Milky Way type, dwarf irregular and giant elliptical systems , 2008 .

[147]  Heidelberg,et al.  Star formation and mass assembly in high-redshift galaxies , 2009, 0905.0683.

[148]  Benjamin D. Johnson,et al.  The UV-Optical Color Magnitude Diagram. II. Physical Properties and Morphological Evolution On and Off of a Star-forming Sequence , 2007, 0711.4823.

[149]  P. Chanial,et al.  Stellar Evolutionary Effects on the Abundances of Polycyclic Aromatic Hydrocarbons and Supernova-Condensed Dust in Galaxies , 2007, 0708.0790.

[150]  F. Combes,et al.  Molecular clouds in the center of M 81 , 2007, 0707.4234.

[151]  A. Cimatti,et al.  Multiwavelength Study of Massive Galaxies at z~2. I. Star Formation and Galaxy Growth , 2007, 0705.2831.

[152]  J. Starck,et al.  The reversal of the star formation-density relation in the distant universe , 2007, astro-ph/0703653.

[153]  M. Bureau,et al.  Molecular gas and star formation in the SAURON early-type galaxies , 2007, astro-ph/0703557.

[154]  D. Calzetti,et al.  Dust Masses, PAH Abundances, and Starlight Intensities in the SINGS Galaxy Sample , 2007, astro-ph/0703213.

[155]  F. Combes,et al.  Star formation efficiency in galaxy interactions and mergers: a statistical study , 2007, astro-ph/0703212.

[156]  A. Hirota,et al.  Nobeyama CO Atlas of Nearby Spiral Galaxies: Distribution of Molecular Gas in Barred and Nonbarred Spiral Galaxies , 2007, 0705.2678.

[157]  Columbia,et al.  Star Formation in AEGIS Field Galaxies since z = 1.1: The Dominance of Gradually Declining Star Formation, and the Main Sequence of Star-forming Galaxies , 2007, astro-ph/0701924.

[158]  K. Tassis,et al.  Scaling Relations of Dwarf Galaxies without Supernova-driven Winds , 2006, Proceedings of the International Astronomical Union.

[159]  G. Stinson,et al.  The Origin and Evolution of the Mass-Metallicity Relationship for Galaxies: Results from Cosmological N-Body Simulations , 2006, astro-ph/0609620.

[160]  Jean-Luc Starck,et al.  Astronomical Data Analysis , 2007 .

[161]  S. Courteau,et al.  A Revised Model for the Formation of Disk Galaxies: Low Spin and Dark Halo Expansion , 2006, astro-ph/0604553.

[162]  P. Ho,et al.  Imaging Molecular Gas in the Luminous Merger NGC 3256: Detection of High-Velocity Gas and Twin Gas Peaks in the Double Nucleus , 2006, astro-ph/0603079.

[163]  C. Steidel,et al.  The Mass-Metallicity Relation at z≳2 , 2006, astro-ph/0602473.

[164]  J. Moustakas,et al.  An Integrated Spectrophotometric Survey of Nearby Star-forming Galaxies , 2005, astro-ph/0511729.

[165]  P. Tissera,et al.  Fingerprints of the hierarchical building-up of the structure on the mass-metallicity relation , 2005, astro-ph/0508680.

[166]  M. Mollá,et al.  A grid of chemical evolution models as a tool to interpret spiral and irregular galaxies data , 2005 .

[167]  E. Rosolowsky,et al.  The Role of Pressure in Giant Molecular Cloud Formation , 2004 .

[168]  T. Contini,et al.  Chemical abundances in spiral and irregular galaxies. O and N abundances derived from global emission-line spectra , 2004 .

[169]  E. Rosolowsky,et al.  The Role of Pressure in GMC Formation , 2004, astro-ph/0407492.

[170]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[171]  -INAF,et al.  The gas content of peculiar galaxies: Strongly interacting systems , 2004, astro-ph/0405112.

[172]  M. Pettini,et al.  [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.

[173]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[174]  R. Chini,et al.  Cold dust and molecular gas towards the centers of Magellanic type galaxies and irregulars - I. The data , 2004 .

[175]  S. García-Burillo,et al.  A new catalogue of ISM content of normal galaxies , 2003, astro-ph/0304054.

[176]  T. U. O. Tokyo,et al.  Enhanced HCN (1-0) Emission in the Type-1 Seyfert Galaxy NGC 1097 , 2002, astro-ph/0210579.

[177]  A. Bolatto,et al.  CO (J = 7→6) Observations of NGC 253: Cosmic-Ray-heated Warm Molecular Gas , 2002, astro-ph/0212271.

[178]  G. Gavazzi,et al.  The CO to H-2 conversion factor in normal late-type galaxies , 2002 .

[179]  L. Dunne,et al.  SCUBA observations of galaxies with metallicity measurements: a new method for determining the relation between submillimetre luminosity and dust mass , 2002, astro-ph/0204519.

[180]  John Ward,et al.  A 12CO J = 6-5 Map of M82: The Significance of Warm Molecular Gas , 2001 .

[181]  Loretta Dunne,et al.  The SCUBA Local Universe Galaxy Survey – II. 450‐μm data: evidence for cold dust in bright IRAS galaxies , 2001, astro-ph/0106362.

[182]  S. García-Burillo,et al.  The gas content of peculiar galaxies: Counterrotators and polar rings , 2001, astro-ph/0105427.

[183]  G. P. Forêts,et al.  Molecular Hydrogen in Space: Observations and Models , 2000 .

[184]  H Germany,et al.  Molecular gas in blue compact dwarf galaxies , 2000, astro-ph/0005311.

[185]  F. Ochsenbein,et al.  The VizieR database of astronomical catalogues , 2000, astro-ph/0002122.

[186]  F. Israel Extragalactic H2 and its variable relation to CO , 2000, astro-ph/0001250.

[187]  H. Kobulnicky,et al.  On Measuring Nebular Chemical Abundances in Distant Galaxies Using Global Emission-Line Spectra , 1998, astro-ph/9811006.

[188]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[189]  P. Solomon,et al.  Rotating Nuclear Rings and Extreme Starbursts in Ultraluminous Galaxies , 1998, astro-ph/9806377.

[190]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[191]  G. Rieke,et al.  Molecular Gas, Morphology, and Seyfert Galaxy Activity , 1997 .

[192]  B. Savage,et al.  Interstellar Gas-Phase Abundances and Physical Conditions toward Two Distant High-Latitude Halo Stars , 1996 .

[193]  Takuji Tsujimoto,et al.  CO-to-H2 Conversion Factor in Galaxies , 1996 .

[194]  G. Kauffmann Disc galaxies at z = 0 and at high redshift: an explanation of the observed evolution of damped Lya absorption systems , 1995, astro-ph/9512123.

[195]  I. Jørgensen,et al.  The Fundamental Plane for cluster E and S0 galaxies , 1995, astro-ph/9511139.

[196]  C. D. Wilson,et al.  The Metallicity Dependence of the CO-to-H2 Conversion Factor from Observations of Local Group Galaxies , 1995, astro-ph/9506103.

[197]  John M. Carpenter,et al.  The FCRAO Extragalactic CO Survey. I. The Data , 1995 .

[198]  J. Gorkom,et al.  A Very Large Array Survey of Neutral Hydrogen in Virgo Cluster Spirals. III. Surface Density Profiles of the Gas , 1994 .

[199]  B. Elmegreen The H to H2 transition in galaxies - Totally molecular galaxies , 1993 .

[200]  M. Edmunds,et al.  The relation between abundance gradients and the physical properties of spiral galaxies , 1992 .

[201]  R. Sahai,et al.  SEST CO observations of galaxies in the Grus Quartet : NGC 7582 and NGC 7552 , 1992 .

[202]  M. S. Roberts,et al.  Interstellar matter in early-type galaxies. I. The catalog , 1991 .

[203]  N. Scoville,et al.  Molecular gas in galaxies , 1991 .

[204]  T. Hasegawa,et al.  The asymmetric CO distribution in the Virgo Cluster spiral NGC 4419 , 1990 .

[205]  N. Devereux,et al.  THE ORIGIN OF THE FAR-INFRARED LUMINOSITY FROM SPIRAL GALAXIES , 1990 .

[206]  P. Knezek,et al.  THE RATIO OF MOLECULAR TO ATOMIC GAS IN SPIRAL GALAXIES AS A FUNCTION OF MORPHOLOGICAL TYPE , 1989 .

[207]  Judith S. Young,et al.  The Effects of Environment on the Molecular and Atomic Gas Properties of Large Virgo Cluster Spirals , 1989 .

[208]  Judith S. Young,et al.  CO observations of all Virgo Cluster spiral galaxies brighter than BTo=12 , 1988 .

[209]  D. Garnett,et al.  Composition gradient across M81 , 1987 .

[210]  S. Djorgovski,et al.  Fundamental Properties of Elliptical Galaxies , 1987 .

[211]  R. Wilson,et al.  Molecules in Galaxies. III. The Virgo Cluster , 1986 .

[212]  P. I. Nelson,et al.  Statistical methods for astronomical data with upper limits. II - Correlation and regression , 1986 .

[213]  P. I. Nelson,et al.  Statistical methods for astronomical data with upper limits. I - Univariate distributions , 1985 .

[214]  R. Giovanelli,et al.  Neutral hydrogen in isolated galaxies. IV - Results for the Arecibo sample , 1984 .

[215]  B. L. Ulich,et al.  Recommendations for calibration of millimeter-wavelength spectral line data. , 1981 .

[216]  R. W. England,et al.  COMSTAR experiment: The crawford hill 7-meter millimeter wave antenna , 1978, The Bell System Technical Journal.

[217]  M. Schmidt The Rate of Star Formation. II. The Rate of Formation of Stars of Different Mass. , 1963 .

[218]  M. Schmidt The Rate of Star Formation , 1959 .

[219]  E. Kaplan,et al.  Nonparametric Estimation from Incomplete Observations , 1958 .