On Contraction Analysis for Non-linear Systems

This paper derives new results in non-linear system analysis using methods inspired from fluid mechanics and differential geometry. Based on a differential analysis of convergence, these results may be viewed as generalizing the classical Krasovskii theorem, and, more loosely, linear eigenvalue analysis. A central feature is that convergence and limit behavior are in a sense treated separately, leading to significant conceptual simplifications. The approach is illustrated by controller and observer designs for simple physical examples.

[1]  Wilson J. Rugh,et al.  Gain scheduling dynamic linear controllers for a nonlinear plant , 1995, Autom..

[2]  M. Vidyasagar,et al.  Nonlinear systems analysis (2nd ed.) , 1993 .

[3]  A. Isidori Nonlinear Control Systems , 1985 .

[4]  C. A. D'Souza,et al.  A new technique for nonlinear estimation , 1996, Proceeding of the 1996 IEEE International Conference on Control Applications IEEE International Conference on Control Applications held together with IEEE International Symposium on Intelligent Contro.

[5]  Vasile Mihai Popov,et al.  Hyperstability of Control Systems , 1973 .

[6]  A. Berthoz Multisensory control of movement , 1993 .

[7]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[8]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[9]  and Charles K. Taft Reswick,et al.  Introduction to Dynamic Systems , 1967 .

[10]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos , 2024 .

[11]  Jean-Jacques E. Slotine,et al.  Applications of contraction analysis , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[12]  Wolfgang Hahn,et al.  Stability of Motion , 1967 .

[13]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[14]  David Lovelock,et al.  Tensors, differential forms, and variational principles , 1975 .

[15]  J. Slotine,et al.  On metric observers for nonlinear systems , 1996, Proceeding of the 1996 IEEE International Conference on Control Applications IEEE International Conference on Control Applications held together with IEEE International Symposium on Intelligent Contro.

[16]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[17]  Henk Nijmeijer,et al.  A passivity approach to controller-observer design for robots , 1993, IEEE Trans. Robotics Autom..

[18]  Derinola K. Adebekun,et al.  Continuous solution polymerization reactor control. 1. Nonlinear reference control of methyl methacrylate polymerization , 1989 .

[19]  Herbert A. Simon,et al.  The Sciences of the Artificial , 1970 .

[20]  Emilio Bizzi,et al.  Modular organization of motor behavior in the frog's spinal cord , 1995, Trends in Neurosciences.

[21]  Y. Bar-Shalom Tracking and data association , 1988 .

[22]  Gary J. Balas,et al.  LPV control design for pitch-axis missile autopilots , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[23]  Ferdinando A. Mussa-Ivaldi,et al.  Nonlinear force fields: a distributed system of control primitives for representing and learning movements , 1997, Proceedings 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation CIRA'97. 'Towards New Computational Principles for Robotics and Automation'.

[24]  E. Bizzi,et al.  Linear combinations of primitives in vertebrate motor control. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Jean-Jacques E. Slotine,et al.  Applications of metric observers for nonlinear systems , 1996, Proceeding of the 1996 IEEE International Conference on Control Applications IEEE International Conference on Control Applications held together with IEEE International Symposium on Intelligent Contro.