Parallel eigenvalue reordering in real Schur forms

A parallel algorithm for reordering the eigenvalues in the real Schur form of a matrix is presented and discussed. Our novel approach adopts computational windows and delays multiple outside‐window updates until each window has been completely reordered locally. By using multiple concurrent windows the parallel algorithm has a high level of concurrency, and most work is level 3 BLAS operations. The presented algorithm is also extended to the generalized real Schur form. Experimental results for ScaLAPACK‐style Fortran 77 implementations on a Linux cluster confirm the efficiency and scalability of our algorithms in terms of more than 16 times of parallel speedup using 64 processors for large‐scale problems. Even on a single processor our implementation is demonstrated to perform significantly better compared with the state‐of‐the‐art serial implementation. Copyright © 2009 John Wiley & Sons, Ltd.

[1]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[2]  Jack J. Dongarra,et al.  A Parallel Algorithm for the Reduction of a Nonsymmetric Matrix to Block Upper-Hessenberg Form , 1995, Parallel Comput..

[3]  Bo Kågström,et al.  Parallel Solvers for Sylvester-Type Matrix Equations with Applications in Condition Estimation, Part I , 2010, ACM Trans. Math. Softw..

[4]  B. Kågström,et al.  The Multishift QZ Algorithm with Aggressive Early Deflation ? , 2006 .

[5]  KågströmBo,et al.  Parallel Solvers for Sylvester-Type Matrix Equations with Applications in Condition Estimation, Part I , 2010 .

[6]  Jan G. Korvink,et al.  Oberwolfach Benchmark Collection , 2005 .

[7]  James Demmel,et al.  On computing condition numbers for the nonsymmetric eigenproblem , 1993, TOMS.

[8]  Jack J. Dongarra,et al.  Numerical Considerations in Computing Invariant Subspaces , 1992, SIAM J. Matrix Anal. Appl..

[9]  Jack J. Dongarra,et al.  A Parallel Implementation of the Nonsymmetric QR Algorithm for Distributed Memory Architectures , 2002, SIAM J. Sci. Comput..

[10]  Krister Dackland,et al.  Blocked algorithms and software for reduction of a regular matrix pair to generalized Schur form , 1999, TOMS.

[11]  Daniel Kressner,et al.  Block algorithms for reordering standard and generalized Schur forms , 2006, TOMS.

[12]  V. N. Bogaevski,et al.  Matrix Perturbation Theory , 1991 .

[13]  Bo Kågström,et al.  Parallel Solvers for Sylvester-Type Matrix Equations with Applications in Condition Estimation, Part I , 2010, ACM Trans. Math. Softw..

[14]  Jack J. Dongarra,et al.  A set of level 3 basic linear algebra subprograms , 1990, TOMS.

[15]  Daniel Kressner,et al.  A parallel Schur method for solving continuous-time algebraic Riccati equations , 2008, 2008 IEEE International Conference on Computer-Aided Control Systems.

[16]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[17]  Bo Kågström,et al.  Computing eigenspaces with specified eigenvalues of a regular matrix pair (A, B) and condition estimation: theory, algorithms and software , 1996, Numerical Algorithms.

[18]  Karen S. Braman,et al.  The Multishift QR Algorithm. Part I: Maintaining Well-Focused Shifts and Level 3 Performance , 2001, SIAM J. Matrix Anal. Appl..

[19]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[20]  J. Demmel,et al.  On swapping diagonal blocks in real Schur form , 1993 .

[21]  Jaeyoung Choi,et al.  The design of a parallel dense linear algebra software library: Reduction to Hessenberg, tridiagonal, and bidiagonal form , 1995, Numerical Algorithms.

[22]  Daniel Kreßner,et al.  Numerical Methods and Software for General and Structured Eigenvalue Problems , 2004 .

[23]  Vasile Sima,et al.  Algorithms for Linear-Quadratic Optimization , 2021 .

[24]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[25]  P. Dooren A Generalized Eigenvalue Approach for Solving Riccati Equations , 1980 .

[26]  J. A. ScottyJanuary An Evaluation of Software for Computing Eigenvalues of Sparse Nonsymmetric Matrices , 1996 .

[27]  Daniel Kressner,et al.  Parallel eigenvalue reordering in real Schur forms , 2009 .

[28]  B. Kågström,et al.  A Direct Method for Reordering Eigenvalues in the Generalized Real Schur form of a Regular Matrix Pair (A, B) , 1993 .

[29]  Andrew G. Glen,et al.  APPL , 2001 .

[30]  Daniel Kressner,et al.  Multishift Variants of the QZ Algorithm with Aggressive Early Deflation , 2006, SIAM J. Matrix Anal. Appl..

[31]  Robert A. van de Geijn,et al.  BLAS (Basic Linear Algebra Subprograms) , 2011, Encyclopedia of Parallel Computing.

[32]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[33]  Nicholas J. Higham,et al.  FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation , 1988, TOMS.

[34]  Bo Kågström,et al.  LAPACK-style algorithms and software for solving the generalized Sylvester equation and estimating the separation between regular matrix pairs , 1994, TOMS.