Fabrication, self-assembly, and properties of ultrathin AlN/GaN porous crystalline nanomembranes: tubes, spirals, and curved sheets.

Ultrathin AlN/GaN crystalline porous freestanding nanomembranes are fabricated on Si(111) by selective silicon etching, and self-assembled into various geometries such as tubes, spirals, and curved sheets. Nanopores with sizes from several to tens of nanometers are produced in nanomembranes of 20-35 nm nominal thickness, caused by the island growth of AlN on Si(111). No crystal-orientation dependence is observed while releasing the AlN/GaN nanomembranes from the Si substrate indicating that the driving stress mainly originates from the zipping effect among islands during growth. Competition between different relaxation mechanisms is experimentally revealed for different nanomembrane geometries and well-described by numerical calculations. The cathodoluminescence emission from GaN nanomembranes reveals a weak peak close to the GaN bandgap, which is dramatically enhanced by electron irradiation.

[1]  O. Schmidt,et al.  Rolled-up micro- and nanotubes from single-material thin films , 2006 .

[2]  Shuji Nakamura,et al.  GaN blue photonic crystal membrane nanocavities , 2005 .

[3]  Oliver G. Schmidt,et al.  Process integration of microtubes for fluidic applications , 2006 .

[4]  Oliver G. Schmidt,et al.  Semiconductor Sub‐Micro‐/ Nanochannel Networks by Deterministic Layer Wrinkling , 2006 .

[5]  Zhenchuan Yang,et al.  Mechanical characterization of suspended GaN microstructures fabricated by GaN-on-patterned-silicon technique , 2006 .

[6]  P. Chu,et al.  Visible cathodoluminescence of 4 Å single-walled carbon nanotubes , 2005 .

[7]  Oliver G. Schmidt,et al.  Three-dimensional nano-objects evolving from a two-dimensional layer technology , 2001 .

[8]  Fabrication of GaN suspended microstructures , 2001 .

[9]  John A Rogers,et al.  Heterogeneous Three-Dimensional Electronics by Use of Printed Semiconductor Nanomaterials , 2006, Science.

[10]  O. Schmidt,et al.  Wrinkled-up nanochannel networks: long-range ordering, scalability, and X-ray investigation. , 2008, ACS nano.

[11]  T. Gaborski,et al.  Charge- and size-based separation of macromolecules using ultrathin silicon membranes , 2007, Nature.

[12]  Magnetotransport in Nonplanar SiGe/Si Nanomembranes , 2007, IEEE Transactions on Nanotechnology.

[13]  M. A. Putyato,et al.  Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays , 2000 .

[14]  Deren Yang,et al.  Enhancement and patterning of ultraviolet emission in ZnO with an electron beam , 2006 .

[15]  Shan-hui Hsu,et al.  Bio-MEMS fabricated artificial capillaries for tissue engineering , 2005 .

[16]  O. Schmidt,et al.  Nanotechnology: Thin solid films roll up into nanotubes , 2001, Nature.

[17]  Oliver G. Schmidt,et al.  Versatile Approach for Integrative and Functionalized Tubes by Strain Engineering of Nanomembranes on Polymers , 2008 .

[18]  S. Hersee,et al.  Electron cyclotron resonance etching characteristics of GaN in SiCl4/Ar , 1996 .

[19]  G. Barbastathis,et al.  Origami fabrication of nanostructured, three-dimensional devices: Electrochemical capacitors with carbon electrodes , 2006 .

[20]  T. Ogawa,et al.  Yellow luminescence from precipitates in GaN epilayers , 1999 .

[21]  John A. Rogers,et al.  Bendable GaN high electron mobility transistors on plastic substrates , 2006 .

[22]  D. Heitmann,et al.  Optical modes in semiconductor microtube ring resonators. , 2006, Physical review letters.

[23]  Noel C. MacDonald,et al.  Photoelectrochemical undercut etching for fabrication of GaN microelectromechanical systems , 2001 .

[24]  Armin Dadgar,et al.  GaN-based optoelectronics on silicon substrates , 2002 .

[25]  Milan Pophristic,et al.  Single-crystal aluminum nitride nanomechanical resonators , 2001 .

[26]  E. Kohn,et al.  Piezoelectric GaN sensor structures , 2006, IEEE Electron Device Letters.

[27]  M. Stutzmann,et al.  Direct biofunctionalization of semiconductors: A survey , 2006 .

[28]  H. Ott Das Gitter des Aluminiumnitrids (AlN) , 1924 .

[29]  Marius Grundmann,et al.  Nanoscroll formation from strained layer heterostructures , 2003 .

[30]  J. Bläsing,et al.  Evolution of stress in GaN heteroepitaxy on AlN∕Si(111): From hydrostatic compressive to biaxial tensile , 2004 .

[31]  M. Stutzmann,et al.  Fabrication of freestanding GaN microstructures using AlN sacrificial layers , 2007 .

[32]  Y. Takagaki,et al.  Strain relaxation in AlN/GaN bilayer films grown on γ-LiAlO2(100) for nanoelectromechanical systems , 2004 .

[33]  Atomic arrangement at the AlN/Si (111) interface , 2003 .

[34]  Oliver Ambacher,et al.  Two-dimensional electron gas based actuation of piezoelectric AlGaN/GaN microelectromechanical resonators , 2008 .

[35]  Feng Liu,et al.  Nanomechanical Architecture of Strained Bilayer Thin Films: From Design Principles to Experimental Fabrication , 2005 .

[36]  Lixin Dong,et al.  Fabrication and characterization of three-dimensional InGaAs/GaAs nanosprings. , 2006, Nano letters.

[37]  Oliver G. Schmidt,et al.  Diameter scalability of rolled-up In(Ga)As/GaAs nanotubes , 2002 .

[38]  H. C. Ong,et al.  Electron Beam Induced Light Emission and Charge Conduction Patterning in ZnO by Using an AlOx Layer , 2005 .

[39]  Shuji Nakamura,et al.  Room-temperature continuous-wave lasing in GaN/InGaN microdisks , 2007 .