Online Learning Discriminative Dictionary with Label Information for Robust Object Tracking

A supervised approach to online-learn a structured sparse and discriminative representation for object tracking is presented. Label information from training data is incorporated into the dictionary learning process to construct a robust and discriminative dictionary. This is accomplished by adding an ideal-code regularization term and classification error term to the total objective function. By minimizing the total objective function, we learn the high quality dictionary and optimal linear multiclassifier jointly using iterative reweighed least squares algorithm. Combined with robust sparse coding, the learned classifier is employed directly to separate the object from background. As the tracking continues, the proposed algorithm alternates between robust sparse coding and dictionary updating. Experimental evaluations on the challenging sequences show that the proposed algorithm performs favorably against state-of-the-art methods in terms of effectiveness, accuracy, and robustness.

[1]  Simone Calderara,et al.  Visual Tracking: An Experimental Survey , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Jingdong Wang,et al.  Online Robust Non-negative Dictionary Learning for Visual Tracking , 2013, 2013 IEEE International Conference on Computer Vision.

[3]  Lei Zhang,et al.  Real-Time Object Tracking Via Online Discriminative Feature Selection , 2013, IEEE Transactions on Image Processing.

[4]  Qinghua Hu,et al.  Robust Object Tracking Via Active Feature Selection , 2013, IEEE Transactions on Circuits and Systems for Video Technology.

[5]  Larry S. Davis,et al.  Label Consistent K-SVD: Learning a Discriminative Dictionary for Recognition , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Shengping Zhang,et al.  Sparse coding based visual tracking: Review and experimental comparison , 2013, Pattern Recognit..

[7]  Huchuan Lu,et al.  Least Soft-Threshold Squares Tracking , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[9]  Cewu Lu,et al.  Online Robust Dictionary Learning , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  Li Bai,et al.  Efficient Minimum Error Bounded Particle Resampling L1 Tracker With Occlusion Detection , 2013, IEEE Transactions on Image Processing.

[11]  Zhongfei Zhang,et al.  A survey of appearance models in visual object tracking , 2013, ACM Trans. Intell. Syst. Technol..

[12]  Lei Zhang,et al.  Real-Time Compressive Tracking , 2012, ECCV.

[13]  Narendra Ahuja,et al.  Low-Rank Sparse Learning for Robust Visual Tracking , 2012, ECCV.

[14]  Huchuan Lu,et al.  Visual tracking via adaptive structural local sparse appearance model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[15]  Huchuan Lu,et al.  Robust object tracking via sparsity-based collaborative model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[16]  Haibin Ling,et al.  Real time robust L1 tracker using accelerated proximal gradient approach , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Narendra Ahuja,et al.  Robust visual tracking via multi-task sparse learning , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Haibin Ling,et al.  Robust Visual Tracking and Vehicle Classification via Sparse Representation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Ming-Hsuan Yang,et al.  Robust Object Tracking with Online Multiple Instance Learning , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Chunhua Shen,et al.  Real-time visual tracking using compressive sensing , 2011, CVPR 2011.

[21]  Junzhou Huang,et al.  Robust tracking using local sparse appearance model and K-selection , 2011, CVPR 2011.

[22]  Junzhou Huang,et al.  Robust and Fast Collaborative Tracking with Two Stage Sparse Optimization , 2010, ECCV.

[23]  Horst Bischof,et al.  MIForests: Multiple-Instance Learning with Randomized Trees , 2010, ECCV.

[24]  Junseok Kwon,et al.  Visual tracking decomposition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[25]  Baoxin Li,et al.  Discriminative K-SVD for dictionary learning in face recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[26]  Shuicheng Yan,et al.  Visual classification with multi-task joint sparse representation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[27]  Horst Bischof,et al.  On-line semi-supervised multiple-instance boosting , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[28]  Jiri Matas,et al.  P-N learning: Bootstrapping binary classifiers by structural constraints , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[29]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[30]  Xi Chen,et al.  Accelerated Gradient Method for Multi-task Sparse Learning Problem , 2009, 2009 Ninth IEEE International Conference on Data Mining.

[31]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Horst Bischof,et al.  Semi-supervised On-Line Boosting for Robust Tracking , 2008, ECCV.

[33]  Martial Hebert,et al.  Discriminative Sparse Image Models for Class-Specific Edge Detection and Image Interpretation , 2008, ECCV.

[34]  Guillermo Sapiro,et al.  Supervised Dictionary Learning , 2008, NIPS.

[35]  Guillermo Sapiro,et al.  Discriminative learned dictionaries for local image analysis , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[36]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[37]  M. Shah,et al.  Object tracking: A survey , 2006, CSUR.

[38]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[39]  Jitendra Malik,et al.  SVM-KNN: Discriminative Nearest Neighbor Classification for Visual Category Recognition , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[40]  Ehud Rivlin,et al.  Robust Fragments-based Tracking using the Integral Histogram , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[41]  Shai Avidan,et al.  Ensemble Tracking , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[42]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[43]  Yanxi Liu,et al.  Online selection of discriminative tracking features , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[46]  Michael J. Black,et al.  EigenTracking: Robust Matching and Tracking of Articulated Objects Using a View-Based Representation , 1996, International Journal of Computer Vision.

[47]  A. Bruckstein,et al.  K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .