The thermophysical properties and defect chemistry of HfO2–Sm3TaO7 ceramics

<jats:p><jats:fig position="anchor"><jats:graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" mimetype="image" position="float" xlink:href="S0884291420001673_figAb.png" /></jats:fig></jats:p>

[1]  Zhenhua Ge,et al.  Thermophysical properties of SmTaO4, Sm3TaO7 and SmTa3O9 ceramics , 2020, Materials Research Express.

[2]  Jing Feng,et al.  Optimization thermophysical properties of TiO2 alloying Sm3 TaO7 ceramics as promising thermal barrier coatings , 2018, International Journal of Applied Ceramic Technology.

[3]  Jing Feng,et al.  Influence of ZrO2 alloying effect on the thermophysical properties of fluorite-type Eu3TaO7 ceramics , 2018, Scripta Materialia.

[4]  Jing Feng,et al.  Potential thermal barrier coating materials: RE 3 NbO 7 ( RE =La, Nd, Sm, Eu, Gd, Dy) ceramics , 2018, Journal of the American Ceramic Society.

[5]  W. Pan,et al.  A promising material for thermal barrier coating: Pyrochlore-related compound Sm2FeTaO7 , 2018 .

[6]  W. Pan,et al.  Defect engineering in development of low thermal conductivity materials: A review , 2017 .

[7]  Li Gang,et al.  Preparation and thermophysical properties of Sm2YbTaO7 and Sm2YTaO7 , 2016 .

[8]  S. Mahesh,et al.  Effect of host structure on the photoluminescence properties of Ln3TaO7:Eu3+ red phosphors , 2016 .

[9]  W. Pan,et al.  Thermo-mechanical properties of ThO2-doped Y2O3 stabilized ZrO2 for thermal barrier coatings , 2016 .

[10]  D. Clarke,et al.  Thermal conductivity of single- and multi-phase compositions in the ZrO2–Y2O3–Ta2O5 system , 2014 .

[11]  R. L. Moreira,et al.  Synchrotron X-ray diffraction and Raman spectroscopy of Ln3NbO7 (Ln=La, Pr, Nd, Sm-Lu) ceramics obtained by molten-salt synthesis , 2014 .

[12]  W. Pan,et al.  Thermal expansion and conductivity of RE2Sn2O7 (RE = La, Nd, Sm, Gd, Er and Yb) pyrochlores , 2013 .

[13]  W. Pan,et al.  Thermal conductivity of rare earth zirconate pyrochlore from first principles , 2013 .

[14]  W. Pan,et al.  Thermophysical properties of rare-earth stannates: Effect of pyrochlore structure , 2012 .

[15]  赵华玉 周霞明 陶顺衍 丁传贤 于建华 大气等离子体喷涂Sm 2 Zr 2 O 7 涂层的结构和性能 , 2011 .

[16]  Y. Hinatsu,et al.  Magnetic properties and structural transitions of orthorhombic fluorite-related compounds Ln3MO7 (Ln=rare earths, M=transition metals) , 2010 .

[17]  W. Pan,et al.  Ultralow thermal conductivity in highly anion-defective aluminates. , 2008, Physical review letters.

[18]  W. Pan,et al.  Thermal Expansion and Defect Chemistry of MgO-Doped Sm2Zr2O7 , 2007 .

[19]  C. Levi,et al.  Opportunities for TBCs in the ZrO2–YO1.5–TaO2.5 system , 2007 .

[20]  Lu Cai,et al.  Structure and dielectric properties of Ln3NbO7 (Ln = Nd, Gd, Dy, Er, Yb and Y) , 2007 .

[21]  M. Fang,et al.  Effect of point defects on the thermal transport properties of (LaxGd1- x)2Zr2O7 : Experiment and theoretical model , 2006 .

[22]  Hsin Wang,et al.  Phase stability, sintering, and thermal conductivity of plasma-sprayed ZrO2–Gd2O3 compositions for potential thermal barrier coating applications , 2006 .

[23]  Robert Vassen,et al.  Zirconates as New Materials for Thermal Barrier Coatings , 2004 .

[24]  Y. Hinatsu,et al.  Crystal structures and magnetic properties of rare earth tantalates RE3TaO7 (RE = rare earths) , 2004 .

[25]  Paul G. Klemens,et al.  Ceramic materials for thermal barrier coatings , 2004 .

[26]  Z. Zou,et al.  Photocatalytic Water Splitting into H2 and O2 over R3TaO7 and R3NbO7 (R = Y, Yb, Gd, La): Effect of Crystal Structure on Photocatalytic Activity , 2004 .

[27]  J. Maguire,et al.  Incorporation of divalent ions in A2B2O7 pyrochlores , 2003 .

[28]  G. Rohrer Structure and Bonding in Crystalline Materials: Index , 2001 .

[29]  N. Padture,et al.  Thermal conductivity of dense and porous yttria-stabilized zirconia , 2001 .

[30]  C. Catlow,et al.  Defects and diffusion in pyrochlore structured oxides , 1998 .

[31]  E. Prince,et al.  Fast-ion conducting Y2(ZryTi1−y)2O7 pyrochlores: neutron Rietveld analysis of disorder induced by Zr substitution , 1995 .