Control Strategy for the Robust Dynamic Walk of a Biped Robot

This paper presents the main simulation and experimental results from studies of the robustness of a proposed new control strategy for the under-actuated robot RABBIT. The disturbances studied include modifications of the characteristics of the foot/ground interaction and the application of external forces to the trunk of the robot. These two kinds of disturbance correspond to those most frequently encountered by biped robots during walking in an unknown environment.

[1]  W. T. Miller,et al.  CMAC: an associative neural network alternative to backpropagation , 1990, Proc. IEEE.

[2]  Jerry E. Pratt,et al.  Stable adaptive control of a bipedal walking; robot with CMAC neural networks , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[3]  James S. Albus,et al.  Data Storage in the Cerebellar Model Articulation Controller (CMAC) , 1975 .

[4]  Qiang Huang,et al.  Humanoids walk with feedforward dynamic pattern and feedback sensory reflection , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[5]  Jean-Guy Fontaine,et al.  Pragmatic rules for real-time control of the dynamic walking of an under-actuated biped robot , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[6]  CHRISTOPHE SABOURIN,et al.  Start, Stop and Transition of Velocities of an under-Actuated Bipedal Robot without Reference Trajectories , 2004, Int. J. Humanoid Robotics.

[7]  S Albusi Data Storage in the Cerebellar Model . . . , 1975 .

[8]  Christine Chevallereau,et al.  Design and actuation optimization of a 4-axes biped robot for walking and running , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[9]  Judy A. Franklin,et al.  Biped dynamic walking using reinforcement learning , 1997, Robotics Auton. Syst..

[10]  Gabriel Buche,et al.  Experimental validation of a robust control strategy for the robot RABBIT , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[11]  Andrew L. Kun,et al.  Adaptive dynamic balance of a biped robot using neural networks , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[12]  Kikuo Fujimura,et al.  The intelligent ASIMO: system overview and integration , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[13]  Christophe Sabourin,et al.  Robustness of the dynamic walk of a biped robot subjected to disturbing external forces by using CMAC neural networks , 2005, Robotics Auton. Syst..

[14]  Kenji KANEKO,et al.  Humanoid robot HRP-3 , 2004, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[15]  James S. Albus,et al.  New Approach to Manipulator Control: The Cerebellar Model Articulation Controller (CMAC)1 , 1975 .

[16]  Taku Komura,et al.  A Feedback Controller for Biped Humanoids that Can Counteract Large Perturbations During Gait , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[17]  Miomir Vukobratovic,et al.  Zero-Moment Point - Thirty Five Years of its Life , 2004, Int. J. Humanoid Robotics.

[18]  Franck Plestan,et al.  Asymptotically stable walking for biped robots: analysis via systems with impulse effects , 2001, IEEE Trans. Autom. Control..

[19]  Ohung Kwon,et al.  Reflex control of biped robots to prevent foot slips during locomotion on a slippery floor , 2001 .

[20]  Jessica K. Hodgins,et al.  Slipping and Tripping Reflexes for Bipedal Robots , 1997, Auton. Robots.