Clock networks for height system unification: a simulation study

[1]  D. Wineland,et al.  Optical Clocks and Relativity , 2010, Science.

[2]  Szabolcs Rózsa,et al.  The Geodesist’s Handbook 2016 , 2016, Journal of Geodesy.

[3]  U. Sterr,et al.  Transportable Optical Lattice Clock with 7×10^{-17} Uncertainty. , 2016, Physical review letters.

[4]  Ludger Timmen,et al.  Time-variable gravity potential components for optical clock comparisons and the definition of international time scales , 2016 .

[5]  N. K. Pavlis,et al.  A re-evaluation of the relativistic redshift on frequency standards at NIST, Boulder, Colorado, USA , 2014 .

[6]  J. Ihde,et al.  Unification of European height system realizations , 2012 .

[7]  C. Guerlin,et al.  Determination of a high spatial resolution geopotential model using atomic clock comparisons , 2016, Journal of Geodesy.

[8]  N Quintin,et al.  A clock network for geodesy and fundamental science , 2016, Nature communications.

[9]  D. Dirkx,et al.  High Performance Clocks and Gravity Field Determination , 2017, 1702.06761.

[10]  Hiroshi Munekane,et al.  Geopotential measurements with synchronously linked optical lattice clocks , 2016 .

[11]  C. Lammerzahl,et al.  Definition of the relativistic geoid in terms of isochronometric surfaces , 2017, 1702.08412.

[12]  Fritz Riehle,et al.  Optical clock networks , 2017, Nature Photonics.

[13]  M. Sideris,et al.  Vertical datum unification for the International Height Reference System (IHRS) , 2017 .

[14]  Marc A. Weiss,et al.  The relativistic redshift with 3×10−17 uncertainty at NIST, Boulder, Colorado, USA , 2003 .

[15]  T. Gruber,et al.  Towards worldwide height system unification using ocean information , 2012 .

[16]  C. Gerlach,et al.  Intercontinental height datum connection with GOCE and GPS-levelling data , 2012 .

[17]  C Sanner,et al.  Single-Ion Atomic Clock with 3×10(-18) Systematic Uncertainty. , 2016, Physical review letters.

[18]  Peter Teunissen,et al.  Height datum definition, height datum connection and the role of the geodetic boundary value problem , 1988 .

[19]  M. Sideris Geodetic World Height System Unification , 2014 .

[20]  Wei Zhang,et al.  An optical lattice clock with accuracy and stability at the 10−18 level , 2013, Nature.

[21]  P. Wolf,et al.  Geodetic methods to determine the relativistic redshift at the level of 10$$^{-18}$$-18 in the context of international timescales: a review and practical results , 2018 .

[22]  J. Lodewyck,et al.  Atomic clocks: new prospects in metrology and geodesy , 2013, 1308.6766.

[23]  M. Sideris,et al.  The GBVP approach for vertical datum unification: recent results in North America , 2015, Journal of Geodesy.

[24]  Jon H. Shirley,et al.  First accuracy evaluation of NIST-F2 , 2014 .

[25]  Thomas Gruber,et al.  Definition and Proposed Realization of the International Height Reference System (IHRS) , 2017, Surveys in Geophysics.

[26]  C. Gerlach,et al.  Global height system unification with GOCE: a simulation study on the indirect bias term in the GBVP approach , 2012, Journal of Geodesy.

[27]  A World Vertical Network. , 1980 .

[28]  L. Sánchez,et al.  Towards a vertical datum standardisation under the umbrella of Global Geodetic Observing System , 2012 .

[29]  Joseph M. Kahn,et al.  Space-Time Reference with an Optical Link , 2015 .

[30]  Karl-Rudolf Koch,et al.  Parameter estimation and hypothesis testing in linear models , 1988 .

[31]  Davide Calonico,et al.  Geodesy and metrology with a transportable optical clock , 2018 .

[32]  A. Bjerhammar,et al.  On a relativistic geodesy , 1985 .