Effect of anoxia/reperfusion on the reversible active/de-active transition of NADH-ubiquinone oxidoreductase (complex I) in rat heart.

[1]  X. Leverve,et al.  Rotenone Inhibits the Mitochondrial Permeability Transition-induced Cell Death in U937 and KB Cells* , 2001, The Journal of Biological Chemistry.

[2]  A. Signorile,et al.  Cyclic adenosine monophosphate-dependent phosphorylation of mammalian mitochondrial proteins: enzyme and substrate characterization and functional role. , 2001, Biochemistry.

[3]  M. Runswick,et al.  GRIM-19, a Cell Death Regulatory Gene Product, Is a Subunit of Bovine Mitochondrial NADH:Ubiquinone Oxidoreductase (Complex I)* , 2001, The Journal of Biological Chemistry.

[4]  M. L. Genova,et al.  The site of production of superoxide radical in mitochondrial Complex I is not a bound ubisemiquinone but presumably iron–sulfur cluster N2 , 2001, FEBS letters.

[5]  J. Casida,et al.  Functional coupling of PSST and ND1 subunits in NADH:ubiquinone oxidoreductase established by photoaffinity labeling. , 2001, Biochimica et biophysica acta.

[6]  A. Vinogradov,et al.  Catalytic Activity of NADH-ubiquinone Oxidoreductase (Complex I) in Intact Mitochondria , 2001, The Journal of Biological Chemistry.

[7]  R. Ferrari,et al.  New insights on myocardial pyridine nucleotides and thiol redox state in ischemia and reperfusion damage. , 2000, Cardiovascular research.

[8]  T. Ohnishi,et al.  Characterization of the complex I-associated ubisemiquinone species: toward the understanding of their functional roles in the electron/proton transfer reaction. , 2000, Biochimica et biophysica acta.

[9]  T. Friedrich,et al.  The respiratory complex I of bacteria, archaea and eukarya and its module common with membrane‐bound multisubunit hydrogenases , 2000, FEBS letters.

[10]  J. Weinberg,et al.  Mitochondrial dysfunction during hypoxia/reoxygenation and its correction by anaerobic metabolism of citric acid cycle intermediates. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[11]  A. Vinogradov,et al.  Active/de‐active state transition of the mitochondrial complex I as revealed by specific sulfhydryl group labeling , 1999, FEBS letters.

[12]  S. Papa,et al.  Arachidonic acid interaction with the mitochondrial electron transport chain promotes reactive oxygen species generation. , 1999, Free radical biology & medicine.

[13]  A. Vinogradov,et al.  Triton X-100 as a specific inhibitor of the mammalian NADH-ubiquinone oxidoreductase (Complex I). , 1999, Biochimica et biophysica acta.

[14]  P. Dutton,et al.  A reductant-induced oxidation mechanism for complex I. , 1998, Biochimica et biophysica acta.

[15]  A. Vinogradov,et al.  Catalytic properties of the mitochondrial NADH-ubiquinone oxidoreductase (complex I) and the pseudo-reversible active/inactive enzyme transition. , 1998, Biochimica et biophysica acta.

[16]  T. Ohnishi,et al.  Iron-sulfur clusters/semiquinones in complex I. , 1998, Biochimica et biophysica acta.

[17]  R. Reneman,et al.  Accumulation of arachidonic acid in ischemic/reperfused cardiac tissue: possible causes and consequences. , 1997, Prostaglandins, leukotrienes, and essential fatty acids.

[18]  A. Vinogradov,et al.  Interaction of the mitochondrial NADH-ubiquinone reductase with rotenone as related to the enzyme active/inactive transition. , 1997, Biochimica et biophysica acta.

[19]  J. Ohlrogge,et al.  Why do mitochondria synthesize fatty acids? Evidence for involvement in lipoic acid production. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[20]  U. Brandt,et al.  Proton-translocation by membrane-bound NADH:ubiquinone-oxidoreductase (complex I) through redox-gated ligand conduction. , 1997, Biochimica et biophysica acta.

[21]  T. Lisowsky,et al.  Different respiratory-defective phenotypes of Neurospora crassa and Saccharomyces cerevisiae after inactivation of the gene encoding the mitochondrial acyl carrier protein , 1995, Current Genetics.

[22]  A. Vinogradov Kinetics, control, and mechanism of ubiquinone reduction by the mammalian respiratory chain-linked NADH-ubiquinone reductase , 1993, Journal of bioenergetics and biomembranes.

[23]  A. Vinogradov,et al.  Kinetics of the mitochondrial NADH-ubiquinone oxidoreductase interaction with hexammineruthenium(III). , 1993, Biochimica et biophysica acta.

[24]  R. Ramsay,et al.  Relation of superoxide generation and lipid peroxidation to the inhibition of NADH-Q oxidoreductase by rotenone, piericidin A, and MPP+. , 1992, Biochemical and biophysical research communications.

[25]  J. Walker,et al.  The NADH:ubiquinone oxidoreductase (complex I) of respiratory chains , 1992, Quarterly Reviews of Biophysics.

[26]  L. Hue,et al.  Global ischaemia induces a biphasic response of the mitochondrial respiratory chain. Anoxic pre-perfusion protects against ischaemic damage. , 1992, The Biochemical journal.

[27]  A. Vinogradov,et al.  Effect of Ca2+ ions on the slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase. , 1992, Biochimica et biophysica acta.

[28]  John E. Walker,et al.  Presence of an acyl carrier protein in NADH:ubiquinone oxidoreductase from bovine heart mitochondria , 1991, FEBS letters.

[29]  V. Darley-Usmar,et al.  Reoxygenation-dependent decrease in mitochondrial NADH:CoQ reductase (Complex I) activity in the hypoxic/reoxygenated rat heart. , 1991, The Biochemical journal.

[30]  A. Vinogradov,et al.  Slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase. , 1990, Biochimica et biophysica acta.

[31]  M. Saraste,et al.  FEBS Lett , 2000 .

[32]  S. Joshi,et al.  [48] Purification of coupling factor B , 1979 .